Confidence Intervals and Hypothesis Testing for TWO Populations

Independent V. Dependent Samples

- Independent
- Drawn from 2 different populations
- The selection of one sample does not affect the selection of the other
- Example

Salaries of Male v
Females

Dependent

- somehow related
- Example

Mean weights before and after a weight loss program

With TWO samples

- Construct Confidence Interval for the difference between population means: $\mu_{1}-\mu_{2}$
- Conduct an hypothesis test about the difference between population means: $\mu_{1}-\mu_{2}$
- $\mu_{1} \rightarrow$ mean of pop. 1
- $\mu_{2} \rightarrow$ mean of pop. 2
- $\sigma_{1} \rightarrow$ st. dev. of pop. 1
- $\sigma_{2} \rightarrow$ st. dev. of pop 2
- $\mathrm{n}_{1} \rightarrow$ sample size drawn from pop 1
- $n_{2} \rightarrow$ sample size drawn from pop 2
- $\bar{x}_{1} \rightarrow$ mean of sample drawn from pop 1
- $\bar{x}_{2} \rightarrow$ mean of sample drawn from pop 2

FORMULAS

- If σ_{1} is known and the population is large or normally distributed, and σ_{2} is known and the population is large or normally distributed, then

$$
\mu_{\overline{x_{1}}-\overline{x_{2}}}=\mu_{1}-\mu_{2} \quad \sigma_{\overline{x_{1}}-\overline{x_{2}}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

Confidence Interval is $\left(\overline{x_{1}}-\overline{x_{2}}\right) \pm z \sigma_{\overline{x_{1}}-\overline{x_{2}}}$
For Hypothesis Testing, the value of the test statistic
is $\quad z_{O}=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sigma_{\overline{x_{1}}-\overline{x_{2}}}}$

A sample of 25 malpractice lawsuits filed against doctors showed that the mean compensation awarded to the plaintiffs was $\$ 410,425$ with a standard deviation of $\mathbf{\$ 7 4 , 8 2 0}$. Find a 95\% confidence interval for the mean compensation awarded to plaintiffs of all such lawsuits. Assume that the compensations awarded to plaintiffs of all such lawsuits are normally distributed.

Constructing a Confidence Interval

Ex 10-3 p. 437: According to PARADE magazine, the average starting salaries for 2004 college grads with economics and business degrees were $\$ 40,906$ and $\$ 38,188$ respectively. Suppose that those averages were based on random samples of 700 econ majors and 1000 business majors with $\sigma_{1}=\$ 5600$ and $\sigma_{2}=\$ 5900$ respectively.
A) What is the point estimate of $\mu_{1}-\mu_{2}$?
B) Construct a 97% confidence interval for $\mu_{1}-\mu_{2}$.

Conducting an Hypothesis Test

- 700 econ majors with mean salary of $\$ 40,906$ and $\sigma_{1}=\$ 5600$
1000 business majors with a mean salary of $\$ 38,188$ and $\sigma_{2}=\$ 5900$
Test at the 1% significance level if the population means of the starting salaries are different.

p. 440 \#4

The following information is obtained from two independent samples selected from 2 pop.
$n_{1}=300 \quad \bar{x}_{1}=22.0 \quad \sigma_{1}=4.9$
$n_{2}=250 \quad \overline{x_{2}}=27.6 \quad \sigma_{2}=4.5$
a) What is the point estimate of $\mu_{1}-\mu_{2}$?

$$
22-27.6=-5.6
$$

b) Construct a 95% confidence interval for $\mu_{1}-\mu_{2}$. Find the margin of error for this estimate.
-6.39 to -4.81 with $E=0.79$

p. 440 \# 9

$n_{1}=29 \quad x_{1}=101 \quad \sigma_{1}=15$
$n_{2}=27 \quad x_{2}=92 \quad \sigma_{2}=10$
a) Let μ_{1} and μ_{2} be the population means of elapsed times for the two repellents, respectively. Find the point estimate of $\mu_{1}-\mu_{2}$. $101-92=9 \mathrm{hr}$
b) Find a 97% confidence interval for $\mu_{1}-\mu_{\mathbf{2}}$ The difference is means is 1.65 to 16.35 hrs
c) Test at the $\mathbf{2 \%}$ significance level whether the mean elapsed times for repellents A and B are different. Reject H_{0} and conclude the mean times are different.

