

 σ_1 and σ_2 unknown and unequal

$\sigma_{\!\!\!1} \, \text{and} \, \sigma_{\!\!\!2} \, \text{unknown}$ and unequal

- Independent Samples
- Unknown σ_1 and σ_2 but assumed to be unequal
- At LEAST ONE of the following is true
 - Both samples are "large"
 - If either sample is small, both populations are normally distributed.

p. 456, #34

Assuming that the two populations are normally distributed with unequal and unknown population standard deviation, construct a 99% confidence interval for $\mu_1 - \mu_2$ for the following $n_1 = 39$ $\overline{x}_1 = 52.61$ $s_1 = 3.55$ $n_2 = 36$ $\overline{x}_2 = 43.75$ $s_2 = 5.40$ df = 59

p. 456, #36

Assuming that the two populations are normally distributed with unequal and unknown population standard deviation, Test at the 1% significance level if the two population means are different.

 $n_1 = 39$ $\overline{x}_1 = 52.61$ $s_1 = 3.55$ $n_2 = 36$ $\overline{x}_2 = 43.75$ $s_2 = 5.40$ df = 59