σ_{1} and σ_{2} unknown and unequal

σ_{1} and σ_{2} unknown and unequal

Degrees of Freedom given by

$$
d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)}{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}} \frac{\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{n_{1}-1}+\frac{n_{2}-1}{\left(n^{2}\right.}
$$

FORMULAS YOU WILL USE

$s_{\overline{x_{1}}-\overline{x_{2}}}=\sqrt{\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}} \quad \begin{aligned} & \text { estimator of the } \\ & \text { standard deviation of } \overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2}\end{aligned}$
$\left(\overline{x_{1}}-\overline{x_{2}}\right) \pm t s_{\overline{x_{1}}-\overline{x_{2}}} \quad$ For Confidence Intervals
$t_{o}=\frac{\left(\overline{x_{1}}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{s_{\overline{x_{1}}-\overline{x_{2}}}}$ The test statistic

p. 456, \#36

Assuming that the two populations are normally distributed with unequal and unknown population standard deviation, Test at the 1% significance level if the two population means are different.

$n_{1}=39$	$\bar{x}_{1}=52.61$	$s_{1}=3.55$
$n_{2}=36$	$\bar{x}_{2}=43.75$	$s_{2}=5.40$

