10.49 a.
$$s_{\overline{d}} = s_d / \sqrt{n} = 6.3 / \sqrt{12} = 1.81865335$$

$$df = n - 1 = 12 - 1 = 11$$

The 99% confidence interval for μ_d is

$$\overline{d} \pm ts_{\overline{d}} = 17.5 \pm 3.106(1.81865335) = 17.5 \pm 5.65 = 11.85 \text{ to } 23.15$$

b.
$$s_{\overline{d}} = s_d / \sqrt{n} = 14.7 / \sqrt{27} = 2.82901632$$

$$df = n - 1 = 27 - 1 = 26$$

The 95% confidence interval for μ_d is

$$\overline{d} \pm ts_{\overline{d}} = 55.9 \pm 2.056(2.82901632) = 55.9 \pm 5.82 = 50.08$$
 to 61.72

c.
$$s_{\overline{d}} = s_d / \sqrt{n} = 8.3 / \sqrt{16} = 2.075$$

$$df = n - 1 = 16 - 1 = 15$$

The 90% confidence interval for μ_d is

$$\overline{d} \pm ts_{\overline{d}} = 29.3 \pm 1.753(2.075) = 29.3 \pm 3.64 = 25.66$$
 to 32.94

10.50 a. Step 1:
$$H_0$$
: $\mu_d = 0$, H_1 : $\mu_d \neq 0$

Step 2: Since the samples are dependent, σ_d is unknown, the sample is small, and the population of paired differences is normally distributed, use the t distribution.

Step 3:
$$df = n - 1 = 9 - 1 = 8$$

For $\alpha = .05$, the critical values of t are -1.860 and 1.860.

Step 4:
$$s_{\overline{d}} = s_d / \sqrt{n} = 2.5 / \sqrt{9} = .83333333$$

 $t = (\overline{d} - \mu_d) / s_{\overline{d}} = (6.7 - 0) / .83333333 = 8.040$

Step 5: Reject H_0 since 8.040 > 1.860.

b. Step 1:
$$H_0$$
: $\mu_d = 0$, H_1 : $\mu_d > 0$

Step 2: Since the samples are dependent, σ_d is unknown, the sample is small, and the population of paired differences is normally distributed, use the t distribution.

Step 3:
$$df = n - 1 = 22 - 1 = 21$$

For $\alpha = .05$, the critical value of t is 1.721.

Step 4:
$$s_{\overline{d}} = s_d / \sqrt{n} = 6.4 / \sqrt{22} = 1.36448458$$

$$t = (\overline{d} - \mu_d) / s_{\overline{d}} = (14.8 - 0) / 1.36448458 = 10.847$$

Step 5: Reject
$$H_0$$
 since $10.847 > 1.721$.

c. Step 1:
$$H_0$$
: $\mu_d = 0$, H_1 : $\mu_d < 0$

Step 2: Since the samples are dependent, σ_d is unknown, the sample is small, and the population of paired differences is normally distributed, use the t distribution.

Step 3: df = n - 1 = 17 - 1 = 16For $\alpha = .01$, the critical value of t is -2.583.

Step 4: $s_{\overline{d}} = s_d / \sqrt{n} = 4.8 / \sqrt{17} = 1.16417100$ $t = (\overline{d} - \mu_d) / s_{\overline{d}} = (-9.3 - 0)/1.16417100 = -7.989$

Step 5: Reject H_0 since -7.989 < -2.583.

10.51 a. Step 1: H_0 : $\mu_d = 0$, H_1 : $\mu_d \neq 0$

Step 2: Since the samples are dependent, σ_d is unknown, the sample is small, and the population of paired differences is normally distributed, use the t distribution.

Step 3: df = n - 1 = 26 - 1 = 25For $\alpha = .05$, the critical values of t are -2.060 and 2.060.

Step 4: $s_{\overline{d}} = s_d / \sqrt{n} = 3.9 / \sqrt{26} = .76485293$ $t = (\overline{d} - \mu_d) / s_{\overline{d}} = (9.6 - 0) / .76485293 = 12.551$

Step 5: Reject H_0 since 12.551 > 2.060.

b. Step 1: H_0 : $\mu_d = 0$, H_1 : $\mu_d > 0$

Step 2: Since the samples are dependent, σ_d is unknown, the sample is small, and the population of paired differences is normally distributed, use the t distribution.

Step 3: df = n - 1 = 15 - 1 = 14For $\alpha = .01$, the critical value of t is 2.624.

Step 4: $s_{\overline{d}} = s_d / \sqrt{n} = 4.7 / \sqrt{15} = 1.21353478$ $t = (\overline{d} - \mu_d) / s_{\overline{d}} = (8.8 - 0) / 1.21353478 = 7.252$

Step 5: Reject H_0 since 7.252 > 2.624.

c. Step 1: H_0 : $\mu_d = 0, H_1$: $\mu_d < 0$

Step 2: Since the samples are dependent, σ_d is unknown, the sample is small, and the population of paired differences is normally distributed, use the t distribution.

Step 3: df = n - 1 = 20 - 1 = 19For $\alpha = .10$, the critical value of t is -1.328.

Step 4: $s_{\overline{d}} = s_d / \sqrt{n} = 2.3 / \sqrt{20} = .51429563$ $t = (\overline{d} - \mu_d) / s_{\overline{d}} = (-7.4 - 0) / .51429563 = -14.389$

Step 5: Reject H_0 since -14.389 < -1.328.

10.52

Before	After	d	d^2
8	10	-2	4
5	8	-3	9
4	5	-1	1
9	11	-2	4
6	6	0	0
9	7	2	4
5	9	-4	16
		$\sum d = -10$	$\sum d^2 = 38$

$$\overline{d} = \sum d/n = -10/7 = -1.43$$

$$s_d = \sqrt{\frac{\sum d^2 - \frac{(\sum d)^2}{n}}{n-1}} = \sqrt{\frac{38 - \frac{(-10)^2}{7}}{7 - 1}} = 1.98805959$$

$$s_{\overline{d}} = s_d / \sqrt{n} = 1.98805959 / \sqrt{7} = .75141590$$

$$df = n - 1 = 7 - 1 = 6$$

a. The 95% confidence interval for μ_d is

$$\overline{d} \pm ts_{\overline{d}} = -1.43 \pm 2.447(.75141590) = -1.43 \pm 1.84 = -3.27 \text{ to } .41$$

b. Step 1:
$$H_0$$
: $\mu_d = 0$, H_1 : $\mu_d < 0$

Step 2: Since the samples are dependent, σ_d is unknown, the sample is small, and the population of paired differences is normally distributed, use the t distribution.

Step 3: For $\alpha = .01$ with df = 6, the critical value of t is -3.143.

Step 4:
$$t = (\overline{d} - \mu_d) / s_{\overline{d}} = (-1.43 - 0) / .75141590 = -1.903$$

Step 5: Do not reject H_0 since -1.903 > -3.143.

Conclude that attending the course does not increase the mean score of employees.

10.53

Before	After	d	d^2
103	100	3	9
97	95	2	4
111	104	7	49
95	101	-6	36
102	96	6	36
96	91	5	25
108	101	7	49
		$\sum d = 24$	$\sum d^2 = 208$

$$\vec{d} = \sum d/n = 24/7 = 3.43$$
 minutes

$$s_d = \sqrt{\frac{\sum d^2 - \frac{(\sum d)^2}{n}}{n-1}} = \sqrt{\frac{208 - \frac{(24)^2}{7}}{7-1}} = 4.57737708 \text{ minutes}$$

$$s_{\overline{d}} = s_d / \sqrt{n} = 4.57737708 / \sqrt{7} = 1.73008592$$
 minutes _

$$df = n - 1 = 7 - 1 = 6$$

a. The 99% confidence interval for μ_d is

$$\overline{d} \pm ts_{\overline{d}} = 3.43 \pm 3.707(1.73008592) = 3.43 \pm 6.41 = -2.98$$
 to 9.84 minutes

b. Step 1:
$$H_0$$
: $\mu_d = 0, H_1$: $\mu_d > 0$

Step 2: Since the samples are dependent, σ_d is unknown, the sample is small, and the population of paired differences is normally distributed, use the t distribution.

Step 3: For
$$\alpha = .025$$
 with $df = 6$, the critical value of t is 2.447.

Step 4:
$$t = (\vec{d} - \mu_d)/s_{\vec{d}} = (3.43 - 0)/1.73008592 = 1.983$$

Step 5: Do not reject
$$H_0$$
 since 1.983 < 2.447.

Conclude that taking the dietary supplement does not result in faster mean times in the time trials.

10.54

Before	After	d	ď
81	97	-16	256
75	72	3	9
89	93	-4	16
91	110	-19	361
65	78	-13	169
70	69	1	1
90	115	-25	625
64	72	-8	64
01		$\Sigma d = -81$	$\sum d^2 = 1501$

$$\overline{d} = \sum d/n = -81/8 = -10.13$$

$$s_d = \sqrt{\frac{\sum d^2 - \frac{(\sum d)^2}{n}}{n-1}} = \sqrt{\frac{1501 - \frac{(-81)^2}{8}}{8-1}} = 9.86244681$$

$$s_{\overline{d}} = s_d / \sqrt{n} = 9.86244681 / \sqrt{8} = 3.48690151$$

$$df = n - 1 = 8 - 1 = 7$$

a. The 90% confidence interval for μ_d is

$$\overline{d} \pm ts_{\overline{d}} = -10.13 \pm 1.895(3.48690151) = -10.13 \pm 6.61 = -16.74 \text{ to } -3.52$$

b. Step 1:
$$H_0$$
: $\mu_d = 0$, H_1 : $\mu_d < 0$

Step 2: Since the samples are dependent, σ_d is unknown, the sample is small, and the population of paired differences is normally distributed, use the t distribution.

Step 3: For
$$\alpha = .05$$
 with $df = 7$, the critical value of t is -1.895 .

Step 4:
$$t = (\overline{d} - \mu_d) / s_{\overline{d}} = (-10.13 - 0)/3.48690151 = -2.905$$

Step 5: Reject
$$H_0$$
 since $-2.905 < -1.895$.

Conclude that attending this course increasing the mean writing speed of secretaries.

10.55

Before	After	d	d^2
180	183	-3	9
195	187	8	64
177	161	16	256
221	204	17	289
208	197	11	121
199	189	10	100
		$\sum d = 59$	$\sum d^2 = 839$

$$\overline{d} = \sum d/n = 59/6 = 9.83$$
 pounds

$$s_d = \sqrt{\frac{\sum d^2 - \frac{(\sum d)^2}{n}}{n-1}} = \sqrt{\frac{839 - \frac{(59)^2}{6}}{6-1}} = 7.19490561 \text{ pounds}$$

$$s_{\overline{d}} = s_d / \sqrt{n} = 7.19490561 / \sqrt{6} = 2.93730791$$
 pounds

$$df = n - 1 = 6 - 1 = 5$$

a. The 95% confidence interval for μ_d is

$$\bar{d} \pm ts_{\bar{d}} = 9.83 \pm 2.571(2.93730791) = 9.83 \pm 7.55 = 2.28$$
 to 17.38 pounds

b. Step 1:
$$H_0$$
: $\mu_d = 0$, H_1 : $\mu_d > 0$

Step 2: Since the samples are dependent, σ_d is unknown, the sample is small, and the population of paired differences is normally distributed, use the t distribution.

Step 3: For $\alpha = .01$ with df = 5, the critical value of t is 3.365.

Step 4:
$$t = (\overline{d} - \mu_d) / s_{\overline{d}} = (9.83 - 0)/2.93730791 = 3.347$$

Step 5: Do not reject H_0 since 3.347 < 3.365.

Conclude that the mean weight loss for all persons due to this special exercise program is not greater than zero.

10.56

Before .	After	d	d^2
24.6	26.3	-1.7	2.89
28.3	31.7	-3.4	11.56
18.9	18.2	.7	.49
23.7	25.3	-1.6	2.56
15.4	18.3	-2.9	8.41
29.5	30.9	-1.4	1.96
		$\sum d = -10.3$	$\sum d^2 = 27.87$

$$\bar{d} = \sum d/n = -10.3/6 = -1.72 \text{ mpg}$$