

Dependent Samples

\square Mean Weight loss before and after an exercise program
\square Effectiveness of fertilizer on the yield of potatoes
\square Called "Paired" or "Matched" samples
\square The difference between the two data values for each element of the two samples is denoted by "d"
\square "Paired difference"
\square Differences are treated as one sample
${ }_{\square}$ Common sample size, n
df $=\mathbf{n - 1}$

If σ_{d} is not known and

At least one of the following are true
\square Sample is large OR population of paired differences is normally distributed
\square The \boldsymbol{t} distribution is used and

$$
s_{\bar{d}}=\frac{s_{d}}{\sqrt{n}}
$$

FORMULAS

$$
\bar{d}=\frac{\sum d}{n}
$$

$$
s_{d}=\sqrt{\frac{\sum d^{2}-\frac{\left(\sum d\right)^{2}}{n}}{n-1}}
$$

\square If σ_{d} is known and either the sample is large or normally distributed, $\mu_{\bar{d}}=\mu_{d}$ and $\sigma_{\bar{d}}=\frac{\sigma_{d}}{\sqrt{n}}$

\section*{| Before | 12 | 18 | 25 | 9 | 14 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 $\begin{array}{llllllll}\text { After } & 18 & 24 & 24 & 14 & 19 & 20\end{array}$}

Using the 1% significance level, can you conclude that the mean weekly sales for all salespersons increase as a result of attending this course? Note: d is sales before minus sales after.

A company wanted to know if attending a course on "How to be a successful salesperson" can increase the average sales of its employees. The company sent 6 employees to attend the course.

