

Pooled Sample Proportion

* The pooled sample proportion is denoted by \bar{p} and is given by:

$$
\bar{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}
$$

* We denote the complement of \bar{p} by \bar{q}, so $\bar{q}=1-\bar{p}$

For 2 large and independent samples, the confidence interval for $p_{1}-p_{2}$ is

$$
\begin{aligned}
& \left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z S_{\hat{p}_{1}-\hat{p}_{2}} \\
& s_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}
\end{aligned}
$$

Requirements

1. We have proportions from two independent simple random samples.
2. For each of the two samples, the number of successes is at least 5 and the number of failures is at least 5 .

Test Statistic for Two Proportions

For $H_{0}: \boldsymbol{p}_{1}-\boldsymbol{p}_{2}=\mathbf{0}$

$$
H_{1}: p_{1}-p_{2} \neq 0, H_{1}: p_{1}-p_{2}<0, \quad H_{1}: p_{1}-p_{2}>0
$$

$$
z=\frac{\left(\hat{\boldsymbol{p}}_{1}-\hat{\boldsymbol{p}}_{2}\right)-\left(\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right)}{\boldsymbol{s}_{\hat{p}_{1}-\hat{p}_{2}}}
$$

$s_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\bar{p} \bar{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$

Example :

A researcher wanted to estimate the difference between the percentages of users of 2 toothpastes who will never switch to another toothpaste. In a sample of 500 users of Toothpaste A, 100 said they will never switch. In a sample of 400 users of Toothpaste B, 68 said they will never switch.
a) What is the point estimate of $p_{1}-p_{2}$?
b) Construct a 97\% confidence interval for difference between the proportions of all users of the two toothpastes who will never switch

Example (cont):

A researcher wanted to estimate the difference between the percentages of users of 2 toothpastes who will never switch to another toothpaste. In a sample of 500 users of Toothpaste A, 100 said they will never switch. In a sample of 400 users of Toothpaste B, 68 said they will never switch. At the 1% level of significance, can we conclude that the proportion of users of toothpaste A who will never switch is higher than the proportion of users of toothpaste B who will never switch?

