Statistics

Raw Data

- Raw data is random and unranked data.
- Organizing Data
- Frequency distributions list all the categories and the numbers of elements that belong to each category

Frequency Distributions for Qualitative Data

- Status of 50 Students (p. 27)

Status Tally f

Displaying info from a freq. distribution

Stress on the Job for 30 Employees
Stress $\quad f \quad$ Rel Freq
Very 10
Somewhat 14
None 6

- Construct a bar graph of the frequencies.
- Construct a bar graph of the relative frequencies

Frequency Distribution for Quantitative Data

Table 2-2 Pulse Rates of Females

	Pulse Rate	Frequency	The frequency for a particular class is the number of original values that fall into that class.
	60-69	12	
	70-79	14	
	80-89	11	
	90-99	1	
	100-109	1	
	110-119	0	
	120-129	1	

Class Boundaries
are the numbers used to separate classes, but without the gaps created by class limits

Class Boundaries are the numbers used to separate classes, but without the gaps created by class limits		
	of Females	
	Pulse Rate	Frequency
59.5	60-69	12
69.5	70-79	14
Class 79.5	80-89	11
Boundaries	90-99	1
- 109.5	100-109	1
119.5	110-119	0
$\begin{array}{ll}\substack{\text { Copyright } \underbrace{}_{\text {200, }} \\ \text { 2007, } 2004 \text { Pearson }} & 129.5\end{array}$	120-129	1

Copyright © 2010,
Education. Inc. All

Class Width

is the difference between two consecutive lower class limits or two consecutive lower class boundaries

Upper Class Limits

are the largest numbers that can actually belong to different classes

Class Midpoints

are the values in the middle of the classes and can be found by adding the lower class limit to the upper class limit and dividing the sum by two

	Table 2-2 of Females	Pulse Rates
	Pulse Rate	Frequency
64.5	60-69	12
74.5	70-79	14
Class 84.5	80-89	11
Midpoints 94.5	90-99	1
Wip 104.5	100-109	1
114.5	110-119	0
Fright © 2010, 124.5	120-129	1
Copyright © 2007 , 2004 Pearson Education, Inc. All		

Histogram (diff from a bar graph)
Basically a graphic version of a frequency distribution.
of Females

Pulse Rate	Frequency
$60-69$	12
$70-79$	14
$80-89$	11
$90-99$	1
$100-109$	1
$110-119$	0
$120-129$	1

Copyright © 2010,
2007, 2004 Pearsor
ducation Inc. All

Histogram

The bars on the horizontal scale are labeled with one of the following:
(1) Class boundaries
(2) Class midpoints
(3) Lower class limits (introduces a small error)

Horizontal Scale for Histogram: Use class boundaries or class midpoints.

Vertical Scale for Histogram: Use the 2007, 200 class frequencies.

Relative Frequency Histogram
Has the same shape and horizontal scale as a histogram, but the vertical scale is marked with relative frequencies instead of actual frequencies
Table 2-3 Relative
Frequency Distribution of Pulse Rates
of Females

PulseRate	Relative Frecuency
$60-69$	30%
$70-79$	35%
$80-89$	27.5%
$90-99$	2.5%
$100-109$	2.5%
$110-119$	0
$120-129$	2.5%

Evur, zuve rearson
Education Inc. All

Frequency Polygon

Uses line segments connected to points directly above class midpoint values

Pareto Chart

A bar graph for qualitative data, with the bars arranged in descending order according to frequencies

Education, Inc. All

Important Principles
 Suggested by Edward Tufte

 For small data sets of $\mathbf{2 0}$ values or fewer, use a table instead of a graph.A graph of data should make the viewer focus on the true nature of the data, not on other elements, such as eye-catching but distracting design features.
Do not distort data, construct a graph to reveal the true nature of the data.
Almost all of the ink in a graph should be used for the data, not the other design elements:

Important Principles Suggested by Edward Tufte

Don't use screening consisting of features such as slanted lines, dots, cross-hatching, because they create the uncomfortable illusion of movement.

Don't use area or volumes for data that are actually one-dimensional in nature. (Don't use drawings of dollar bills to represent budget amounts for different years.)

Never publish pie charts, because they waste ink on nondata components, and they lack approppratate scale.

Nonzero Axis

Are misleading because one or both of the axes begin at some value other than zero, so that differences are exaggerated.

Annual Incomes of Groups with Different Education Levels

Misleading. Depicts one-dimensional data with threedimensional boxes. Last box is $\mathbf{6 4}$ times as large as first box, but income is only 4 times as large.

2007, 2004 Pearson
Education, Inc. All

Bars have same width, too busy, too difficult to understand.

Annual Incomes of Groups with Different Education Levels

Fair objective, unencumbered by distracting 2007, 2004 Pearson
Education, Inc. All
features.

