

Mean

Advantages
 Is relatively reliable, means of samples
 drawn from the same population don't
 vary as much as other measures of
 center

Takes every data value into account

Disadvantage

Is sensitive to every data value, one extreme value can affect it dramatically; is not a *resistant* measure of center

Median Median the middle value when the original data values are arranged in order of increasing (or decreasing) magnitude

is not affected by an extreme value -- is a resistant measure of the center

3.1 - 8

5.40	1.10	0.42	0.73	0.48	1.10				
0.42	0.48	0.73	1.10	1.10	5.40				
(in order - even number of values – no exact middle shared by two numbers)									
<u>0.73 + 1.10</u> 2			.						
5.40	1.10	0.42	0.73	0.48	1.10	0.66			
0.42 (in order	0.48 - odd num	0.66 ber of valu		1.10	1.10	5.40			
	middlo	MEI	DIAN i	\$					

nat occurs with the greatest
n have one, more than one, or no
o data values occur with the me greatest frequency
ore than two data values occur th the same greatest equency
data value is repeated

Definition The range of a set of data values is the difference between the maximum data value and the minimum data value. Range = (maximum value) – (minimum value) Lis very sensitive to extreme values; therefore not as useful as other measures of variation.

Round-Off Rule for
Measures of VariationWhen rounding the value of a
measure of variation, carry one more
decimal place than is present in the
original set of data.Round only the final answer, not values in
the middle of a calculation.

Properties of the Standard Deviation

- Measures the variation among data values
- Values close together have a small standard deviation, but values with much more variation have a larger standard deviation
- Has the same units of measurement as the original data

ight © 2010.2009/soft@uPatieson Education. Inc. All Rights F

3.1 - 23

Properties of the Standard Deviation

- For many data sets, a value is *unusual* if it differs from the mean by more than two standard deviations
- Compare standard deviations of two different data sets only if the they use the same scale and units, and they have means that are approximately the same

3.1 - 24

Variance - Notations = sample standard deviation $s^2 = sample$ variance $\sigma = population$ standard deviation $\sigma^2 = population$ variance $\sigma^2 = population$ variance

Section 3-4 Use of Standard Deviation

By using the mean and standard deviation, we can find the proportion or percentage of total observations that fall within a given interval about the mean.

Empirical Rule

© 2010-2007-2004 Pearson Education. Inc. All Piehts P.

Chebyshev's Theorem

Empirical (or 68-95-99.7) Rule

For data sets having a distribution that is approximately bell shaped, the following properties apply:

- About 68% of all values fall within 1 standard deviation of the mean.
- About 95% of all values fall within 2 standard deviations of the mean.
- About 99.7% of all values fall within 3 standard deviations of the mean.

A sample of 1000 observations has a mean of 64 and a standard deviation of 8.

- a) Using Chebyshen's thm., find at least what % of the observations fall in the intervals $\bar{x} \pm 2s$ and $\bar{x} \pm 1.5s$
- b) Using the empirical rule, find what percentage of the observations fall in the intervals $\mu \pm 1\sigma$ and $\mu \pm 2\sigma$

© 2010, 2007, 2004 Pearson Education, Inc. All Rights R

3.1 - 35

The average systolic blood pressure for 4000 women who were screened for high blood pressure was found to be 187 with a standard deviation of 22. Using Chebyshev's thm., find at least what percentage of women in this group have a systolic blood pressure between 143 and 231 The age distribution of a sample of 5000 persons is bell-shaped with a mean of 40 years and a standard deviation of 12 years. Determine the approximate percentage of people who are 16 to 64 years old.

3.1 - 3

qua	rtiles	5.		es of quar				
47	28	39	51	33	37	59	24	33
Convright	t @ 2010-2005	2004 Baamar	Education In	o All Dialute D	aramad			3.1 - 41

Draw a box and whisker plot for the following data								
35	29	44	72	34	64	41	50	
54	104	39	58					
	ht © 2010, 2007, 20						3.1 - 53	