

Inverse Operations

Addition and subtraction are *inverse* operations: starting with a number x, adding 5, and subtracting 5 gives x back as the result. Similarly, some functions are *inverses* of each other. For example, the functions defined by

$$f(x) = 8x \text{ and } g(x) = \frac{1}{8}x$$

are inverses of each other with respect to function composition.

Copyright @2009 Pearson Education, Inc

Inverse Operations

This means that if a value of x such as x = 12 is chosen, then

$$f(12) = 8 \cdot 12 = 96.$$

Calculating g(96) gives

$$g(96) = \frac{1}{8} \cdot 96 = 12.$$

Copyright ©2009 Pearson Education, In

Inverse Operations

Thus g(f(12)) = 12. Also, f(g(12)) = 12. For these functions f and g, it can be shown that

$$f(g(\mathbf{x})) = \mathbf{x}$$
 and $g(f(\mathbf{x})) = \mathbf{x}$

Copyright @2009 Pearson Education, Inc

for any value of x.

One-to-One Functions

Suppose we define the function

 $F = \{(-2,2), (-1,1), (0,0), (1,3), (2,5)\}.$

We can form another set of ordered pairs from *F* by interchanging the *x*- and *y*-values of each pair in *F*. We call this set *G*, so

 $G = \{(2, -2), (1, -1), (0, 0), (3, 1), (5, 2)\}.$

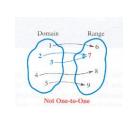
Copyright @2009 Pearson Education, Inc

One-to-One Functions

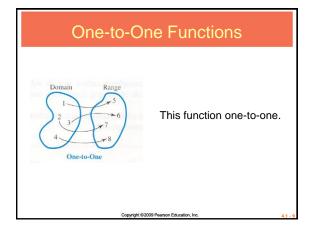
To show that these two sets are related, *G* is called the *inverse* of *F*. For a function *f* to have an inverse, *f* must be a *one-to-one function*. *In a one-to-one function, each x-value corresponds to only one y- value, and each y-value corresponds to only one x-value.*

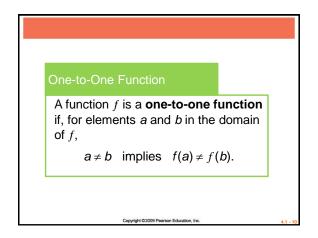
Copyright @2009 Pearson Educati

One-to-One Functions



This function is not oneto-one because the *y*value 7 corresponds to two *x*-values, 2 and 3. That is, the ordered pairs (2, 7) and (3, 7) both belong to the function.





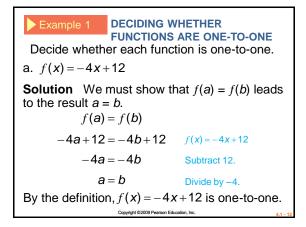
One-to-One Functions

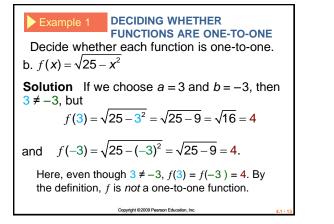
Using the concept of the *contrapositive* from the study of logic, the last line in the preceding box is equivalent to

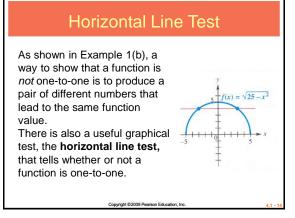
$$f(a) = f(b)$$
 implies $a = b$

We use this statement to decide whether a function f is one-to-one in the next example.

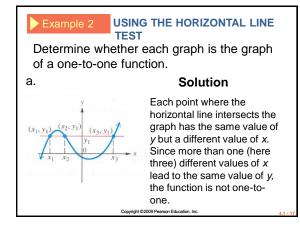
Copyright @2009 Pearson Education, Inc.

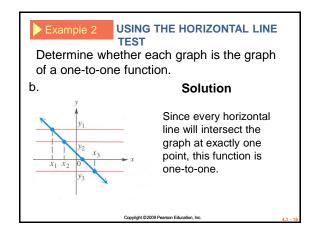






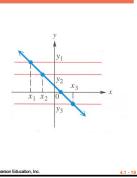
If any horizontal line intersects the graph of a function in no more than one point, then the function is one-toone. Note In Example 1(b), the graph of the function is a semicircle, as shown in Figure 3. Because there is at least one horizontal line that intersects the graph in more than one point, this function is not one-to-one.

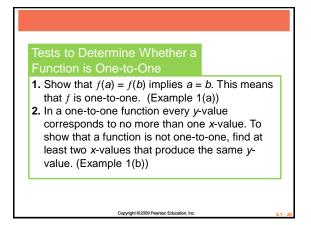




One-to-One Functions

Notice that the function graphed in Example 2(b) decreases on its entire domain. *In general, a function that is either increasing or decreasing on its entire domain, such as* f(x) = -x, $f(x) = x^3$, and $g(x) = \sqrt{x}$, must be *one-to-one.*



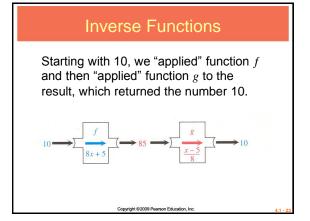


Tests to Determine Whether a Function is One-to-One

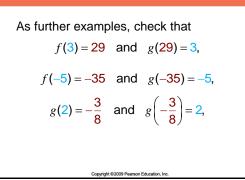
- **3.** Sketch the graph and use the horizontal line test. (Example 2)
- If the function either increases or decreases on its entire domain, then it is one-to-one. A sketch is helpful here, too. (Example 2(b))

Copyright @2009 Pearson Edu

Inverse Functions
Certain pairs of one-to-one functions
"undo" one another. For example, if
$$f(x) = 8x + 5$$
 and $g(x) = \frac{x - 5}{8}$,
then
 $f(10) = 8 \cdot 10 + 5 = 85$ and $g(85) = \frac{85 - 5}{8} = 10$.



Inverse Functions



In particular, for this pair of functions,

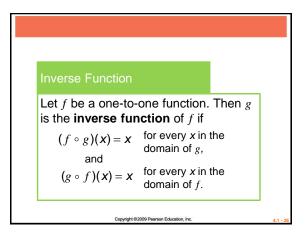
f(g(2)) = 2 and g(f(2)) = 2.

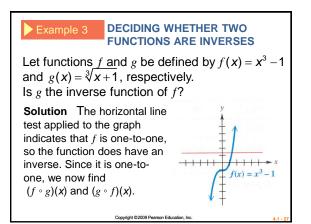
In fact, for any value of x,

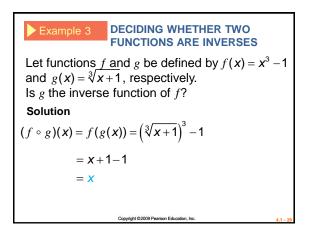
 $f(g(\mathbf{x})) = \mathbf{x}$ and $g(f(\mathbf{x})) = \mathbf{x}$,

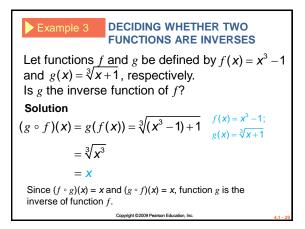
or $(f \circ g)(x) = x$ and $(g \circ f)(x) = x$.

Because of this property, g is called the *inverse* of f.







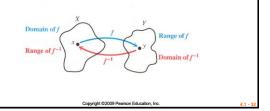


Special Notation

A special notation is used for inverse functions: If *g* is the inverse of a function *f*, then *g* is written as f^{-1} (read "*f*-inverse"). For $f(x) = x^3 - 1$, $f^{-1}(x) = \sqrt[3]{x+1}$. **Caution** Do not confuse the -1 in f^1 with a negative exponent. The symbol $f^{-1}(x)$ does not represent $\frac{1}{f(x)}$; it represents the inverse function of f.

Inverse Function

By the definition of inverse function, the domain of f is the range of f^{-1} , and the range of f is the domain of f^{-1} .



Example 4 FINDING THE INVERSES OF ONE-TO-ONE FUNCTIONS

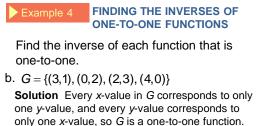
Copyright @2009 Pearson Education,

Find the inverse of each function that is one-to-one.

a. $F = \{(-2,1), (-1,0), (0,1), (1,2), (2,2)\}$

Solution Each *x*-value in *F* corresponds to just one *y*-value. However, the *y*-value 2 corresponds to two *x*-values, 1 and 2. Also, the *y*-value 1 corresponds to both -2 and 0. Because some *y*values correspond to more than one *x*-value, *F* is not one-to-one and does not have an inverse.

Copyright @2009 Pearson Education, Inc



only one *x*-value, so *G* is a one-to-one function. The inverse function is found by interchanging the x- and y-values in each ordered pair.

$$G^{-1} = \{(1,3), (2,0), (3,2), (0,4)\}$$

Notice how the domain and range of G becomes the range and domain, respectively, of G^{-1} .

Example 4 FINDING THE INVERSES OF ONE-TO-ONE FUNCTIONS

Find the inverse of each function that is one-to-one.

c. If the Air Quality Index (AQI), an indicator of air quality, is between 101 and 150 on a particular day, then that day is classified as unhealthy for sensitive groups. The table shows the number of days in Illinois that were unhealthy for sensitive groups for selected years.

25
20
40
34
19
7

Example 4 FINDING THE INVERSES OF ONE-TO-ONE FUNCTIONS

Find the inverse of this function that is oneto-one.

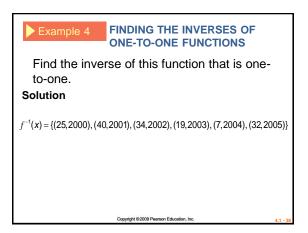
c. Let *f* be the function defined in the table, with the years forming the domain and the numbers of unhealthy days forming the range.

Example 4 FINDING THE INVERSES OF ONE-TO-ONE FUNCTIONS

Find the inverse of this function that is oneto-one.

Solution Each x-value in f
corresponds to only one y-
value and each y-value
corresponds to only one x-
value, so f is a one-to-one
function. The inverse
function is found by
interchanging the x- and y-
values in the table.

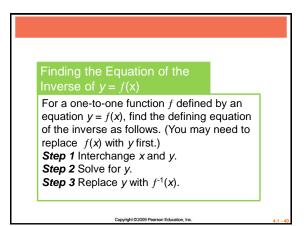
alue in <i>f</i> ⁄ one <i>γ</i> -	Year	Number of Unhealthy Days
alue	2000	25
one <i>x</i> -	2001	40
-to-one	2002	34
se .	2003	19
- and y-	2004	7
-	2005	32
Copyright @2009 Pearson Education,	, Inc.	4



Equations of Inverses

By definition, the inverse of a one-to-one function is found by interchanging the *x*and *y*-values of each of its ordered pairs. The equation of the inverse of a function defined by y = f(x) is found in the same way.

Copyright @2009 Pearson Education, In

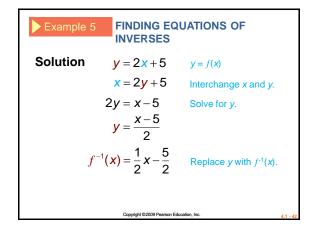


Example 5 FINDING EQUATIONS OF INVERSES

Decide whether each equation defines a one-to-one function. If so, find the equation of the inverse.

a.
$$f(x) = 2x + 5$$

Solution The graph of y = 2x + 5 is a nonhorizontal line, so by the horizontal line test, *f* is a one-to-one function. To find the equation of the inverse, follow the steps in the preceding box, first replacing f(x) with *y*.



Example 5 FINDING EQUATIONS OF

Solution

In the function, the value of y is found by starting with a value of x, multiplying by 2, and adding 5. The first form for the equation of the inverse has us *subtract* 5 and then *divide* by 2. This shows how an inverse is used to "undo" what a function does to the variable x.

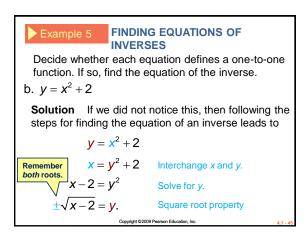
Copyright @2009 Pearson Educa

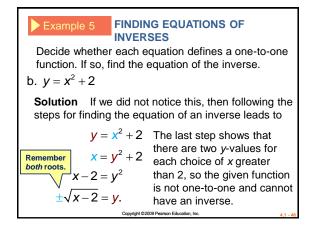
Decide whether each equation defines a one-to-one function. If so, find the equation of the inverse.

b. $y = x^2 + 2$

Solution The equation has a parabola opening up as its graph, so some horizontal lines will intersect the graph at two points. For example, both x = 3 and x = -3 correspond to y = 11. Because of the x^2 -term, there are many pairs of *x*-values that correspond to the same *y*-value. This means that the function defined by $y = x^2 + 2$ is not one-to-one and does not have an inverse.

Copyright @2009 Pearson Education, Inc.





Example 5 FINDING EQUATIONS OF INVERSES

Decide whether each equation defines a one-to-one function. If so, find the equation of the inverse.

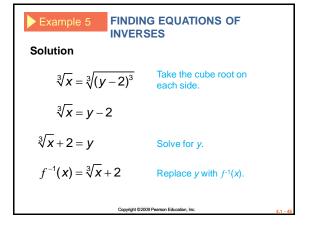
c.
$$f(x) = (x-2)^3$$

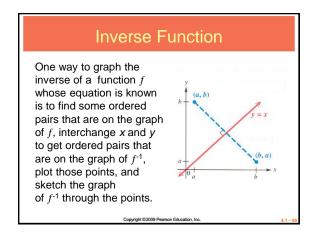
Solution Refer to **Sections 2.6 and 2.7** to see that translations of the graph of the cubing function are one-to-one.

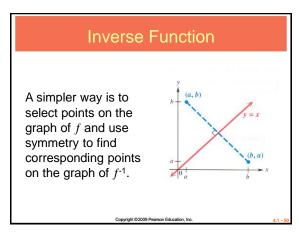
$$f(x) = (x-2)^3$$

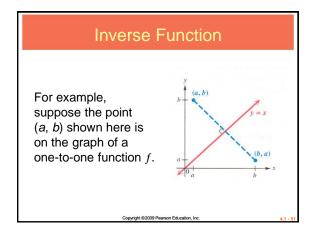
$$y = (x-2)^3$$
 Replace $f(x)$ with y.

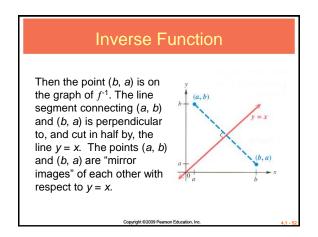
$$x = (y-2)^3$$
 Interchange x and y.

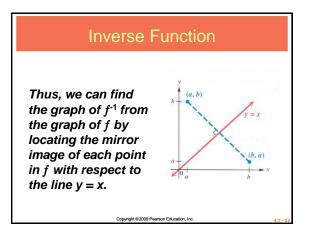










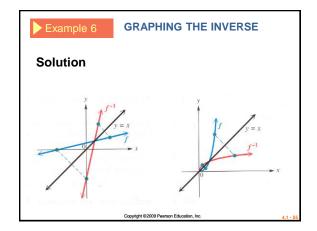


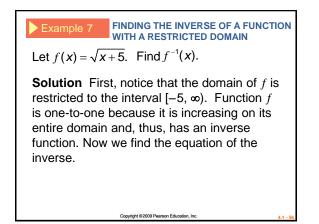
Example 6 **GRAPHING THE INVERSE**

In each set of axes, the graph of a one-toone function f is shown in blue. Graph f^{-1} in red.

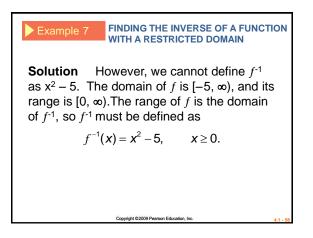
Solution The graphs of two functions *f* are shown in blue. Their inverses are shown in red. In each case, the graph of f^{-1} is a reflection of the graph of *f* with respect to the line y = x.

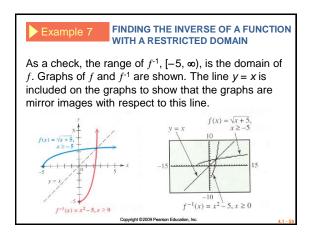
right ©2009 Pearson Education, In

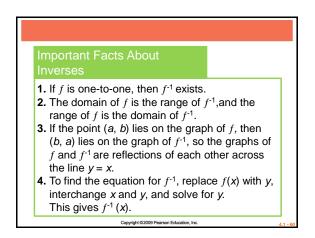




		IVERSE OF A FUNCTION
Solution		
$f(\mathbf{x}) = \sqrt{\mathbf{x} + 5},$	$x \ge -5$	
$y = \sqrt{x+5},$	<i>x</i> ≥–5	y = f(x)
$\mathbf{x} = \sqrt{\mathbf{y} + 5},$	<i>y</i> ≥ −5	Interchange x and y.
$x^2 = \left(\sqrt{y+5}\right)^2$		Square both sides.
$y=x^2-5$		Solve for y.
Сор	yright ©2009 Pearson Educ	ation, Inc. 4.1 - 57







Application of Inverse Functions to Cryptography

A one-to-one function and its inverse can be used to make information secure. The function is used to encode a message, and its inverse is used to decode the coded message. In practice, complicated functions are used. We illustrate the process with the simple function defined by f(x) = 3x + 1. Each letter of the alphabet is assigned a numerical value according to its position in the alphabet, as follows.

Copyright @2009 Pearson Education. In

Application of Inverse Functions to Cryptography									
				- 71					
А	1		Н	8	0	15	V	22	
В	2		I	9	P	16	W	23	
С	3		J	10	Q	17	X		
D	4		K	11	R	18	Y	25	
Е	5		L	12	S	19	Z		
F	6		М	13	Т	20			
G	7		Ν	14	U	21			
					009 Pearson E				

Example 8 USING FUNCTIONS TO ENCODE AND DECODE A MESSAGE

Use the one-to-one function defined by f(x) = 3x + 1 and the preceding numerical values to encode and decode the message BE VERY CAREFUL.

Solution The message BE VERY CAREFUL would be encoded as

7 16 67 16 55 76 10 4 55 16 19 64 37

because B corresponds to 2 and

f(2) = 3(2) + 1 = 7,

Copyright ©2009 Pearson Education, Inc

Example 8 USING FUNCTIONS TO ENCODE AND DECODE A MESSAGE Use the one-to-one function defined by f(x) = 3x + 1 and the preceding numerical values to encode and decode the message BE VERY CAREFUL. Solution The message BE VERY CAREFUL would be encoded as 7 16 67 16 55 76 10 4 55 16 19 64 37 E corresponds to 5 and f(5) = 3(5) + 1 = 16

Example 8 USING FUNCTIONS TO ENCODE AND DECODE A MESSAGE

Use the one-to-one function defined by f(x) = 3x + 1 and the preceding numerical values to encode and decode the message BE VERY CAREFUL.

Solution The message BE VERY CAREFUL would be encoded as

7 16 67 16 55 76 10 4 55 16 19 64 37

and so on. Using the inverse $f^{-1}(x) = \frac{1}{3}x - \frac{1}{3}$ to decode yields $f^{-1}(7) = \frac{1}{3}(7) + 1 = 2$

Example 8 USING FUNCTIONS TO ENCODE AND DECODE A MESSAGE Use the one-to-one function defined by f(x) = 3x + 1 and the preceding numerical values to encode and decode the message BE VERY CAREFUL. Solution The message BE VERY CAREFUL would be encoded as 7 16 67 16 55 76 10 4 55 16 19 64 37 $f^{-1}(7) = \frac{1}{3}(7) + 1 = 2$, which corresponds to B,

Example 8 USING FUNCTIONS TO ENCODE AND DECODE A MESSAGE Use the one-to-one function defined by

f(x) = 3x + 1 and the preceding numerical values to encode and decode the message BE VERY CAREFUL.

Solution The message BE VERY CAREFUL would be encoded as

7 16 67 16 55 76 10 4 55 16 19 64 37

$$f^{-1}(16) = \frac{1}{3}(16) + 1 = 5,$$

corresponds to E, and so on.

Copyright @2009 Pearson Education, Inc.