
11/5/2015

1

4.4 - 1

10TH EDITION

LIAL

HORNSBY

SCHNEIDER

COLLEGE 

ALGEBRA

4.4 - 24.4 - 2

4.4
Evaluating Logarithms and the Change-

of-Base Theorem

Common Logarithms

Applications and Modeling with Common 

Logarithms

Natural Logarithms

Applications and Modeling with Natural 

Logarithms

Logarithms with Other Bases

4.4 - 34.4 - 3

Common Logarithm

For all positive numbers x, 

log x  =  log10 x.

4.4 - 44.4 - 4

Common Logarithms

A calculator with a log key can be used 

to find the base ten logarithm of any

positive number. Consult your owner’s 

manual for the keystrokes needed to 

find common logarithms.
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Note     Base a, a > 1, logarithms of 

numbers between 0 and 1 are always 

negative, as suggested by the graphs in 

Section 4.3.

4.4 - 64.4 - 6

Applications and Modeling

In chemistry, the pH of a solution is defined as

3pH log[H O ], 

where [H3O
+] is the hydronium ion concentration 

in moles per liter. The pH value is a measure of 

the acidity or alkalinity of a solution. Pure water 

has pH 7.0, substances with pH values greater 

than 7.0 are alkaline, and substances with pH 

values less than 7.0 are acidic. It is customary to 

round pH values to the nearest tenth.
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Example 1 FINDING pH

Solution

a. Find the pH of a solution with [H3O
+] = 2.5  10-4.

3pH log[ ]H O 

42.log[ ]5 10  Substitute

4(log2.5 log10 )   Product property

(.3979 4)   log 10-4 = – 4 

.3979 4   Distributive 

property

pH 3.6
4.4 - 84.4 - 8

Example 1 FINDING pH 

Solution

b.

3log[Hp O ]H  

3log[H7 1 O ].   Substitute

37.1 log[H O ]  Multiply by −1. 

7.1

3[H O ] 10  Write in exponential 

form.

Evaluate 10-7.1 with a 

calculator.

Find the hydronium ion concentration of a solution 

with pH = 7.1.

8

3[H O ] 7.9 10  

4.4 - 94.4 - 9

Note In the fourth line of the solution in 

Example 1(a), we use the equality symbol, 

=, rather than the approximate equality 

symbol, ≈, when replacing log 2.5 with 

.3979. This is often done for convenience, 

despite the fact that most logarithms used 

in applications are indeed approximations.
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Example 2 USING pH IN AN APPLICATION

Wetlands are classified as bogs, fens, marshes, 

and swamps. These classifications are based on 

pH values. A pH value between 6.0 and 7.5, 

such as that of Summerby Swamp in Michigan’s 

Hiawatha National Forest, indicates that the 

wetland is a “rich fen.” When the pH is between 

4.0 and 6.0, it is a “poor fen,” and if the pH falls 

to 3.0 or less, the wetland is a “bog.” Suppose 

that the hydronium ion concentration of a sample 

of water from a wetland is 6.3  10 –5. How 

would this wetland be classified?

4.4 - 114.4 - 11

Example 2 USING pH IN AN APPLICATION

Solution

3pH log[H O ]  Definition of pH

5log(6.3 10 )   Substitute

5(log6.3 log10 )   Product property

log6.3 ( 5)   

log6.3 5  

Distributive 

property

pH 4.2
Since the pH is between 4.0 and 

6.0, the wetland is a poor fen.
4.4 - 124.4 - 12

Example 3 MEASURING THE LOUDNESS OF 

SOUND

The loudness of sounds is measured in a unit 

called a decibel. To measure with this unit, we 

first assign an intensity of I0 to a very faint sound, 

called the threshold sound. If a particular sound 

has intensity I, then the decibel rating of this 

louder sound is

0

10 log .
I

d
I



Find the decibel rating of a sound with intensity 

10,000I0.
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Example 3 MEASURING THE LOUDNESS OF 

SOUND

Solution

0

0

10,000
10 logd

I

I


Let I = 10,000I0.

10 log10,000d 

10(4) log 10,000 = log 104 = 4

40

The sound has a decibel rating of 40.
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Natural Logarithms

In Section 4.2, we introduced the irrational number 

e. In most practical applications of logarithms, e is 

used as base. Logarithms with base e are called 

natural logarithms, since they occur in the life 

sciences and economics in natural situations that 

involve growth and decay. The base e logarithm of x 

is written ln x (read “el-en x”). The expression 

ln x represents the exponent to which e must be 

raised in order to obtain x.

4.4 - 154.4 - 15

Natural Logarithm

For all positive numbers x,

In log .x x
e

4.4 - 164.4 - 16

Example 4 MEASURING THE AGE OF ROCKS

Geologists sometimes measure the age of rocks 

by using “atomic clocks.” By measuring the 

amounts of potassium 40 and argon 40 in a rock, 

the age t of the specimen in years is found with 

the formula

9

In 1 8.33

(1.26 10 ) ,
In 2

A

K
t

  
   

   

where A and K are the numbers of atoms of argon 

40 and potassium 40, respectively, in the specimen.

4.4 - 174.4 - 17

Example 4 MEASURING THE AGE OF ROCKS

9 9

9

In 1 8.33

(1.26 10 ) (1.26 10 )
In 2

In 1

In 2

(1.26 10 )( ) 0.0

A

K
t

  
   

     

  

Solution

a. How old is a rock in which A = 0 and K > 0?

If A = 0,           and the equation becomes0
A

K


The rock is new (0 yr old).

4.4 - 184.4 - 18

b. The ratio      for a sample of granite from New 

Hampshire is .212. How old is the sample?

Example 4 MEASURING THE AGE OF ROCKS

  9 9In 1 8.33 .212
(1.26 10 ) 1.85 10 .

In 2
t


   

Solution

Since               , we have.212
A

K


The granite is about 1.85 billion yr old.

A

K
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Example 5
MODELING GLOBAL 

TEMPERATURE INCREASE
Carbon dioxide in the atmosphere traps heat from 

the sun. The additional solar radiation trapped by 

carbon dioxide is called radiative forcing. It is 

measured in watts per square meter (w/m2).  In 

1896 the Swedish scientist Svante Arrhenius 

modeled radiative forcing R caused by additional 

atmospheric carbon dioxide using the logarithmic 

equation

0

In ,
C

R k
C



where C0 is the preindustrial amount of carbon 

dioxide, C is the current carbon dioxide level, and k 

is a constant. Arrhenius determined that 10  k  16 

when C = 2C0. 4.4 - 204.4 - 20

a. Let C = 2C0. Is the relationship between 

R and k linear or logarithmic?

Example 5
MODELING GLOBAL 

TEMPERATURE INCREASE

Solution

If C = 2C0, then            so R = k In 2 is a 

linear relation, because ln 2 is a constant.
0

2,
C

C


4.4 - 214.4 - 21

b. The average global temperature increase T 

(in °F) is given by T(R) = 1.03R.  Write T as 

a function of k.

Example 5
MODELING GLOBAL 

TEMPERATURE INCREASE

Solution

( ) 1.03T R R

0

( ) 1.03 In
C

T k k
C

 Use the given expression 

for R.

4.4 - 224.4 - 22

Logarithms and Other Bases

We can use a calculator to find the

values of either natural logarithms (base e) 

or common logarithms (base 10). However, 

sometimes we must use logarithms with 

other bases. The following theorem can be 

used to convert logarithms from one base 

to another.

4.4 - 234.4 - 23

Change-of-Base Theorem

For any positive real numbers x, a, 

and b, where a ≠ 1 and b ≠ 1:

log
log .

log
b

a

b

x
x

a


4.4 - 244.4 - 24

Example 6
USING THE CHANGE-OF-BASE 

THEOREM

Use the change-of-base theorem to find an 

approximation to four decimal places for each 

logarithm.

Solution

a.
5log 17

We will arbitrarily use 

natural logarithms.

5

In 2.8332
log 1.7604

In 1

17

5 .6094
17   

There is no need 

to actually write 

this step.
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Example 6
USING THE CHANGE-OF-BASE 

THEOREM

Use the change-of-base theorem to find an 

approximation to four decimal places for each 

logarithm.

Solution

b.
2log .1

Here we use common 

logarithms.

2

log
log 3.3219

l

.1
.1

og 2
  

4.4 - 264.4 - 26

Note In Example 6, logarithms evaluated in 

the intermediate steps, such as ln 17 and ln 5, 

were shown to four decimal places. However, the 

final answers were obtained without rounding 

these intermediate values, using all the digits 

obtained with the calculator. In general, it is best 

to wait until the final step to round off the 

answer; otherwise, a build-up of round-off

errors may cause the final answer to have an 

incorrect final decimal place digit.
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Example 7
MODELING DIVERSITY OF 

SPECIES

One measure of the diversity of the species in an 

ecological community is modeled by the formula

1 2 1 2 2 2 2[ log log log ],n nH P P P P P P    

where P1, P2, …, Pn are the proportions of a 

sample that belong to each of n species found in 

the sample.

Find the measure of diversity in a community 

with two species where there are 90 of one 

species and 10 of the other.

4.4 - 284.4 - 28

Example 7
MODELING DIVERSITY OF 

SPECIES

2 2[.9 log .9 .1log .1].H   

Since there are 100 members in the community, 

Solution

1 2

90 10
.9  and  .1, so

100 100
P P   

Now we find log2 .9.

2

.9log
log .152

l g2
.9

o
  

4.4 - 294.4 - 29

Example 7
MODELING DIVERSITY OF 

SPECIES

2 2[.9 log .9 .1log .1]H   

Therefore,

Solution

[.9( .152) .1( 3.32)] .469     

Verify that H ≈ .971 if there are 60 of one species and 

40 of the other. As the proportions of n species get 

closer to     each, the measure of diversity increases to 

a maximum of log2 n.

1

n

Found in 

Example 6b.


