

Note Base a, a>1, logarithms of numbers between 0 and 1 are always negative, as suggested by the graphs in Section 4.3.

Common Logarithms

A calculator with a log key can be used to find the base ten logarithm of any positive number. Consult your owner's manual for the keystrokes needed to find common logarithms.

Applications and Modeling

In chemistry, the $\mathbf{p H}$ of a solution is defined as

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

where $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is the hydronium ion concentration in moles per liter. The pH value is a measure of the acidity or alkalinity of a solution. Pure water has pH 7.0 , substances with pH values greater than 7.0 are alkaline, and substances with pH values less than 7.0 are acidic. It is customary to round pH values to the nearest tenth.

Example $1 \quad$ FINDING pH

a. Find the pH of a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.5 \times 10^{-4}$.

Solution

$$
\begin{array}{rlrl}
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] & & \\
& =-\log \left[2.5 \times 10^{-4}\right] & & \text { Substitute } \\
& =-\left(\log 2.5+\log 10^{-4}\right) & & \text { Product property } \\
& =-(.3979-4) & & \log 10^{-4}=-4 \\
& =-.3979+4 & & \text { Distributive } \\
& & \text { property }
\end{array}
$$

$\mathrm{pH} \approx 3.6$

Note In the fourth line of the solution in

Example $1 \quad$ FINDING pH

b. Find the hydronium ion concentration of a solution with $\mathrm{pH}=7.1$.

Solution

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& 7.1=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \text { Substitute } \\
& -7.1=\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \text { Multiply by }-1 \text {. } \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-7.1} \quad \text { Write in exponential }} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx 7.9 \times 10^{-8} \quad \text { Evaluate } 10^{-7.7} \text { with a }} \\
& \text { Copyight@2009 Pearson Education, Inc. }
\end{aligned}
$$

Example 2 USING pH IN AN APPLICATION

Wetlands are classified as bogs, fens, marshes, and swamps. These classifications are based on pH values. A pH value between 6.0 and 7.5, such as that of Summerby Swamp in Michigan's Hiawatha National Forest, indicates that the wetland is a "rich fen." When the pH is between 4.0 and 6.0, it is a "poor fen," and if the pH falls to 3.0 or less, the wetland is a "bog." Suppose that the hydronium ion concentration of a sample of water from a wetland is 6.3×10^{-5}. How would this wetland be classified?

Example 2 USING pH IN AN APPLICATION

Solution

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \text {Definition of } \mathrm{pH} \\
& =-\log \left(6.3 \times 10^{-5}\right) \\
& \text { Substitute } \\
& =-\left(\log 6.3+\log 10^{-5}\right) \\
& \text { Product property } \\
& =-\log 6.3-(-5) \quad \begin{array}{l}
\text { Distributive } \\
\text { property }
\end{array} \\
& =-\log 6.3+5 \\
& \mathrm{pH} \approx 4.2 \begin{array}{l}
\text { Since the } \mathrm{pH} \text { is between } 4.0 \text { and } \\
6.0, \text { the wetland is a poor fen. }
\end{array} \\
& \text { copyight@2009 Pearson Education, lice. }
\end{aligned}
$$

Example 3
 MEASURING THE LOUDNESS OF

 SOUNDThe loudness of sounds is measured in a unit called a decibel. To measure with this unit, we first assign an intensity of I_{0} to a very faint sound, called the threshold sound. If a particular sound has intensity I, then the decibel rating of this louder sound is

$$
d=10 \log \frac{l}{I_{0}} .
$$

Find the decibel rating of a sound with intensity 10,0001 .

Example 3

MEASURING THE LOUDNESS OF SOUND

Solution

$$
\begin{array}{rlrl}
d & =10 \log \frac{10,000 I_{0}}{I_{0}} & \text { Let } I=10,000 I_{0} . \\
d & =10 \log 10,000 & \\
& =10(4) & & \log 10,000=\log 10^{4}=4 \\
& =40 &
\end{array}
$$

The sound has a decibel rating of 40 .

Natural Logarithms

In Section 4.2, we introduced the irrational number e. In most practical applications of logarithms, e is used as base. Logarithms with base e are called natural logarithms, since they occur in the life sciences and economics in natural situations that involve growth and decay. The base e logarithm of x is written In x (read "el-en x "). The expression In x represents the exponent to which e must be raised in order to obtain x.

Example 4 MEASURING THE AGE OF ROCKS

Geologists sometimes measure the age of rocks by using "atomic clocks." By measuring the amounts of potassium 40 and argon 40 in a rock, the age t of the specimen in years is found with the formula

$$
t=\left(1.26 \times 10^{9}\right) \frac{\ln \left(1+8.33\left(\frac{A}{K}\right)\right)}{\ln 2}
$$

where A and K are the numbers of atoms of argon 40 and potassium 40 , respectively, in the specimen.

Copyight 92009 Pearson Education, Inc.

Example 4 MEASURING THE AGE OF ROCKS

a. How old is a rock in which $A=0$ and $K>0$?

Solution

If $A=0, \frac{A}{K}=0$ and the equation becomes
$t=\left(1.26 \times 10^{9}\right) \frac{\ln \left(1+8.33\left(\frac{A}{K}\right)\right)}{\ln 2}=\left(1.26 \times 10^{9}\right) \frac{\ln 1}{\ln 2}$
$=\left(1.26 \times 10^{9}\right)(0)=0$.
The rock is new (0 yr old).

Example 4 MEASURING THE AGE OF ROCKS

b. The ratio $\frac{A}{K}$ for a sample of granite from New Hampshire is .212. How old is the sample?

Solution

Since $\frac{A}{K}=.212$, we have

$$
t=\left(1.26 \times 10^{9}\right) \frac{\ln (1+8.33(.212))}{\ln 2} \approx 1.85 \times 10^{9} .
$$

The granite is about 1.85 billion yr old.

Example 5 MODELING GLOBAL TEMPERATURE INCREASE

Carbon dioxide in the atmosphere traps heat from the sun. The additional solar radiation trapped by carbon dioxide is called radiative forcing. It is measured in watts per square meter ($\mathrm{w} / \mathrm{m}^{2}$). In 1896 the Swedish scientist Svante Arrhenius modeled radiative forcing R caused by additional atmospheric carbon dioxide using the logarithmic equation

$$
R=k \ln \frac{C}{C_{0}}
$$

where C_{0} is the preindustrial amount of carbon dioxide, C is the current carbon dioxide level, and k is a constant. Arrhenius determined that $10 \leq \mathrm{k} \leq 16$ when $C=2 C_{0}$.

Example 5 MODELING GLOBAL TEMPERATURE INCREASE

a. Let $C=2 C_{0}$. Is the relationship between R and k linear or logarithmic?

Solution

If $C=2 C_{0}$, then $\frac{C}{C_{0}}=2$, so $R=k \ln 2$ is a linear relation, because $\ln 2$ is a constant.

MODELING GLOBAL

 TEMPERATURE INCREASEb. The average global temperature increase T (in ${ }^{\circ} \mathrm{F}$) is given by $T(R)=1.03 R$. Write T as a function of k.

Solution

$$
\begin{aligned}
& T(R)=1.03 R \\
& T(k)=1.03 \mathrm{k} \ln \frac{C}{C_{0}} \quad \begin{array}{l}
\text { Use the given expression } \\
\text { for } R .
\end{array}
\end{aligned}
$$

Logarithms and Other Bases

We can use a calculator to find the values of either natural logarithms (base e) or common logarithms (base 10). However, sometimes we must use logarithms with other bases. The following theorem can be used to convert logarithms from one base to another.

Example 6 USING THE CHANGE-OF-BASE THEOREM
 Use the change-of-base theorem to find an approximation to four decimal places for each logarithm.

a. $\log _{5} 17$

Solution

We will arbitrarily use natural logarithms.

$$
\log _{5} 17=\frac{\ln 17}{\ln 5} \approx \frac{2.8332}{1.6094} \approx 1.7604
$$

Example 6 USING THE CHANGE-OF-BASE

 THEOREMUse the change-of-base theorem to find an approximation to four decimal places for each logarithm.
b. $\log _{2} .1$

Solution

Here we use common logarithms.

$$
\log _{2} .1=\frac{\log .1}{\log 2} \approx-3.3219
$$

Example 7

MODELING DIVERSITY OF SPECIES

One measure of the diversity of the species in an ecological community is modeled by the formula

$$
H=-\left[P_{1} \log _{2} P_{1}+P_{2} \log _{2} P_{2}+\cdots+P_{n} \log _{2} P_{n}\right]
$$

where $P_{1}, P_{2}, \ldots, P_{n}$ are the proportions of a sample that belong to each of n species found in the sample.

Find the measure of diversity in a community with two species where there are 90 of one species and 10 of the other.

Copyighte2009 Pearson Education, Inc.

Note In Example 6, logarithms evaluated in the intermediate steps, such as $\ln 17$ and $\ln 5$, were shown to four decimal places. However, the final answers were obtained without rounding these intermediate values, using all the digits obtained with the calculator. In general, it is best to wait until the final step to round off the answer; otherwise, a build-up of round-off errors may cause the final answer to have an incorrect final decimal place digit.

Example 7 MODELING DIVERSITY OF
 Solution

Since there are 100 members in the community,

$$
\begin{gathered}
P_{1}=\frac{90}{100}=.9 \text { and } P_{2}=\frac{10}{100}=.1, \text { so } \\
H=-\left[.9 \log _{2} .9+.1 \log _{2} .1\right] .
\end{gathered}
$$

Now we find $\log _{2} .9$.

$$
\log _{2} \cdot 9=\frac{\log .9}{\log 2} \approx-.152
$$

Example 7 MODELING DIVERSITY OF

Solution
Therefore,

$$
\begin{aligned}
H & =-\left[.9 \log _{2} .9+.1 \log _{2} .1\right] \quad \begin{array}{l}
\text { Found in } \\
\text { Example } 6
\end{array} \\
& \approx-[.9(-.152)+.1(-3.32)] \approx .469
\end{aligned}
$$

Verify that $H \approx .971$ if there are 60 of one species and 40 of the other. As the proportions of n species get closer to $\frac{1}{n}$ each, the measure of diversity increases to a maximum of $\log _{2} n$.

