

1 Equations and Inequalities

1.1 Linear Equations

1.2 Applications and Modeling with Linear Equations

1.3 Complex Numbers

1.4 Quadratic Equations

1.1 Linear Equations

Basic Terminology of Equations Solving Linear Equations Identities, Conditional Equations, and Contradictions Solving for a Specified Variable (Literal Equations)

1.1 Example 1 Solving a Linear Equation (page 85)

$$
\begin{array}{rlrl}
\text { Solve }-4(3 x-5) & =3-(8 x+7) . \\
-4(3 x-5) & =3-(8 x+7) \\
-12 x+20 & =3-8 x-7 & \text { Distributive property } \\
-12 x+20 & =-4-8 x & & \text { Combine terms. } \\
24 & =4 x & & \begin{array}{ll}
\text { Add } 4 \text { to both sides. } \\
\text { Add } 12 x \text { to both sides. }
\end{array} \\
6 & =x & & \text { Combine terms. } \\
\text { Divide both sides by } 4 .
\end{array}
$$

$$
\text { Solution set: \{6\} }
$$

1.1 Example 3(a) Identifying Types of Equations (page 86)

Decide whether the equation is an identity, a conditional equation, or a contradiction. Give the solution set.

$$
\begin{array}{rlrl}
6 x-9 & =4 x+13 \\
2 x & =22 \quad & & \text { Add }-4 x \text { and } 9 \text { to both } \\
\text { sides. Combine terms. }
\end{array}
$$

This is a conditional equation.
Solution set: $\{11\}$
1.1 Example 3(b) Identifying Types of Equations (page 86)

Decide whether the equation is an identity, a conditional equation, or a contradiction. Give the solution set.

$$
\begin{aligned}
10+14 x & =7(2 x-5) & & \\
10+14 x & =14 x-35 & & \text { Distributive property } \\
10 & =-35 & & \begin{array}{l}
\text { Subtract } 14 x \text { from both } \\
\text { sides. }
\end{array}
\end{aligned}
$$

This is a contradiction.

$$
\text { Solution set: } \varnothing
$$

1.1 Example 3(c) Identifying Types of Equations (page 86)

Decide whether the equation is an identity, a conditional equation, or a contradiction. Give the solution set.

$$
\begin{array}{rlrl}
-3(2 x-1)+5 x & =3-x & & \\
-6 x+3+5 x & =3-x & & \text { Distributive property } \\
-x+3 & =3-x & & \text { Combine terms } \\
0 & =0 & & \text { Add } x \text { and }-3 \text { to both } \\
& & \text { sides. }
\end{array}
$$

This is an identity. Solution set: \{all real numbers\}

1.1 Example 4 Solving for a Specified Variable (cont.)

Solve for the specified variable.
(c) $11 y+8=2(4 y+5 w)-6 z$, for y
$11 y+8=2(4 y+5 w)-6 z$
$11 y+8=8 y+10 w-6 z \quad$ Distributive property

$$
\begin{aligned}
3 y=10 w-6 z-8 & \begin{array}{l}
\text { Subtract } 8 y \text { and } 8 \text { from both } \\
\text { sides. }
\end{array} \\
y=\frac{10 w-6 z-8}{3} & \text { Divide both sides by } 3 .
\end{aligned}
$$

Example 5 Applying the Simple Interest Formula (page 88)

Caden borrowed $\$ 2580$ to buy new kitchen appliances for his home. He will pay off the loan in 9 months at an annual simple interest rate of 6.0\%. How much interest will he pay?

$$
\begin{gathered}
I=P r t \\
P=\$ 2580, t=\frac{9}{12}=\frac{3}{4} y r, \text { and } r=.06 \\
I=P r t=2580(.06)\left(\frac{3}{4}\right)=\$ 116.10
\end{gathered}
$$

Caden will pay $\$ 116.10$ in interest.

The length of a rectangle is 2 in . more than the width. If the length and width are each increased by 3 in., the perimeter of the new rectangle will be 4 in. less than 8 times the width of the original rectangle. Find the dimensions of the original rectangle.
Assign variables:
Let $x=$ the length of the original rectangle.

1.2 Example 2 Solving a Motion Problem (page 92)

Krissa drove to her grandmother's house. She averaged 40 mph driving there. She was able to average 48 mph returning, and her driving time was 1 hr less. What is the distance between Krissa's house and her grandmother's house?

Let $x=$ the distance between Krissa's house and her grandmother's house

1.2 Example 3 Solving a Mixture Problem (cont)

Create a table to show the relationships in the problem.

Strengith	Giallons of: Soluisin	Gailons of Pure Antifrexe
25%	π	$.25 x$
10%	5	$.10 \cdot 5=5$
15%	$\pi+5$	$.15(x+5)$

Write an equation: $.25 x+.5=.15(x+5)$

1.2 Example 1 Find the Dimensions of a Square (cont.)

The perimeter of the new rectangle is

The perimeter of the new rectangle is 4 in . less than 8 times the width of the original rectangle, so we have

1.2 Example 3 Solving a Mixture Problem (page 93)

How many liters of a 25% anti-freeze solution should be added to 5 L of a 10% solution to obtain a 15% solution?

1.2 Example 4 Solving an Investment Problem (page 94)

Last year, Owen earned a total of \$1456 in interest from two investments. He invested a total of $\$ 28,000$, part at 4.8% and the rest at 5.5%. How much did he invest at each rate?

Let $x=$ amount invested at 4.8%.
Then 28,000 $-x=$ amount invested at 5.5%.

1.2 Example 4 Solving an Investment Problem (cont.)

Create a table to show the relationships in the problem.

Multiply or divide. Simplify each answer.
(a) $\sqrt{-21} \cdot \sqrt{-21}=i \sqrt{21} \cdot i \sqrt{21}=i^{2} \cdot(\sqrt{21})^{2}$

$$
=-1 \cdot 21=-21
$$

(b) $\sqrt{-5} \cdot \sqrt{-30}=i \sqrt{5} \cdot i \sqrt{30}=i^{2} \sqrt{150}$

$$
=i^{2} \sqrt{25 \cdot 6}=-5 \sqrt{6}
$$

A range hood removes contaminants at a rate of F liters of air per second. The percent P of contaminants that are also removed from the surrounding air can be modeled by the linear equation

$$
P=1.06 F+7.18
$$

where $10 \leq F \leq 75$. What flow F must a range hood have to remove 70% of the contaminants from the air?

1.3 Example 1 Writing $\sqrt{-a}$ as $i \sqrt{a}$ (page 104)

Write as the product of a real number and i.
(a) $\sqrt{-81}=i \sqrt{81}=9 i$
(b) $\sqrt{-55}=i \sqrt{55}$
(c) $\sqrt{-98}=i \sqrt{98}=i \sqrt{49 \cdot 2}=7 i \sqrt{2}$

Multiply or divide. Simplify each answer.
(c) $\frac{\sqrt{-42}}{\sqrt{-3}}=\frac{i \sqrt{42}}{i \sqrt{3}}=\sqrt{\frac{42}{3}}=\sqrt{14}$
(d) $\frac{\sqrt{-63}}{\sqrt{21}}=\frac{i \sqrt{63}}{\sqrt{21}}=i \sqrt{\frac{63}{21}}=i \sqrt{3}$

1.3 Example 3 Simplifying a Quotient Involving a Negative Radicand (page 105)	
Write $\frac{15-\sqrt{-75}}{5}$ in standard form $a+b i$. $\begin{aligned} \frac{15-\sqrt{-75}}{5} & =\frac{15-i \sqrt{75}}{5} \quad \sqrt{-75}=i \sqrt{75} \\ & =\frac{15-i \sqrt{25 \cdot 3}}{5} \\ & =\frac{15-5 i \sqrt{3}}{5} \\ & =\frac{5(3-i \sqrt{3})}{5} \quad \text { Factor. } \\ & =3-i \sqrt{3} \end{aligned}$	
	${ }_{1} .25$

Example 5 Multiplying Complex Numbers (page 107)

Find each product.
(a) $(5+3 i)(2-7 i)=5(2)+(5)(-7 i)+(3 i)(2)+(3 i)(-7 i)$

$$
\begin{aligned}
& =10-35 i+6 i-21 i^{2} \\
& =10-29 i-21(-1) \\
& =31-29 i
\end{aligned}
$$

(b) $(4-5 i)^{2}=4^{2}-2(4)(5 i)+(5 i)^{2}$

$$
\begin{aligned}
& =16-40 i+25 i^{2} \\
& =16-40 i+25(-1) \\
& =-9-40 i
\end{aligned}
$$

Copyight © 2008 Pearson Addison-Wesley. All rights reserved. 1-27

Example 6 Simplifying Powers of i (page 107)

Simplify each power of i.
(a) i^{33}
(b) i^{-14}

Write the given power as a product involving $i^{2}=-1$ or $i^{4}=1$.
(a) $i^{33}=i^{32}-i$
(b) $r^{-14}=r^{-16} \cdot i^{2}$
$=\left(i^{4}\right)^{8} \cdot i$
$=\left(i^{16}\right)^{-1} \cdot i^{2}$
$=1^{8} \cdot i$
$=i$
$=\left(\left(i^{4}\right)^{4}\right)^{-1} \cdot i^{2}$
$=1^{-1} \cdot(-1)=-1$
1.3 Example 4 Adding and Subtracting Complex Numbers (page 106)

Find each sum or difference.
(a) $(4-5 i)+(-5+8 i)=[4+(-5)]+(-5 i+8 i)$

$$
=-1+3 i
$$

(b) $(-6+3 i)+(12-9 i)=6-6 i$
(c) $(-10+7 i)-(5-3 i)=(-10-5)+[7 i+(3 i)]$

$$
=-15+10 i
$$

(d) $(15-8 i)-(-10+4 i)=25-12 i$

Example 5 Multiplying Complex Numbers (cont.)

Find the product.
(c) $(9-8 i)(9+8 i)=9^{2}-(8 i)^{2}$

$$
\begin{aligned}
& =81-64 i^{2} \\
& =81-64(-1) \\
& =81+64 \\
& =145 \text { or } 145+0 i
\end{aligned}
$$

This screen shows how the TI-83/84 Plus displays the results in this example.

Copyright © 2008 Pearson Addison-Westey. All rights reserved.

Example 7(a) Dividing Complex Numbers (page 108)

Write in standard form $a+b i$.

$$
\begin{array}{rlrl}
\frac{5-5 i}{3+i} & =\frac{5-5 i}{3+i} \cdot \frac{3-i}{3-i} & & \begin{array}{l}
\text { Multiply the numerator and } \\
\text { denominator by the complex } \\
\text { conjugate of the denominator. }
\end{array} \\
& =\frac{15-5 i-15 i+5 i^{2}}{9-i^{2}} & & \text { Multiply. } \\
& =\frac{15-20 i-5}{9-(-1)} & & i^{2}=-1 \\
& =\frac{10-20 i}{10} & & \text { Combine terms. } \\
& =1-2 i & & \text { Lowest terms; standard form } \\
\text { Copyright 2008 Pearson Addison-Westey. All ights reserved. }
\end{array}
$$

1.3 Example 7(b) Dividing Complex Numbers (page 108)

Write in standard form $a+b i$.

$$
\begin{aligned}
\frac{15}{-i} & =\frac{15}{-i} \cdot \frac{i}{i} \\
& =\frac{15 i}{-i^{2}}=\frac{15 i}{1} \\
& =15 i \text { or } 0+15 i
\end{aligned}
$$

Multiply the numerator and denominator by the complex conjugate of the denominator.

Multiply. $-r^{2}=1$
Lowest terms; standard form

This screen shows how the TI-83/84 Plus displays the results in this example.

Copyight © 2008 Pearson Addison-Westley. All rights reserved.

1.4 Quadratic Equations

Solving a Quadratic Equation Completing the Square The Quadratic Formula Solving for a Specified Variable The Discriminant

Example 1 Using the Zero-Factor Property (page 111)

Solve $10 x^{2}+x-2=0$.

$$
\begin{array}{rlrl}
10 x^{2}+x-2=0 & & \\
\begin{aligned}
(2 x+1)(5 x-2) & =0 & & \text { Factor. } \\
2 x+1=0 & \text { or } & 5 x-2 & =0
\end{aligned} & \begin{array}{l}
\text { Set each factor } \\
\text { equal to 0 a and } t
\end{array} \\
2 x & =-1 & \text { or } & 5 x
\end{array}=2 \begin{aligned}
& \text { solve for } x .
\end{aligned}
$$

$$
\text { Solution set: }\left\{-\frac{1}{2}, \frac{2}{5}\right\}
$$

1.4 Example 3 Using the Method of Completing the Square, $a=1$ (page 113)

Solve $x^{2}+10 x-20=0$ by completing the square.
Rewrite the equation so that the constant is alone on one side of the equation.

$$
x^{2}+10 x=20
$$

Square half the coefficient of x, and add this square to both sides of the equation.

$$
\begin{aligned}
x^{2}+10 x+\left(\frac{1}{2} \cdot 10\right)^{2} & =20+\left(\frac{1}{2} \cdot 10\right)^{2} \\
x^{2}+10 x+25 & =20+25
\end{aligned}
$$

1.4 Example 1 Using the Zero-Factor Property (cont.)

Now check.

$$
\begin{array}{r|r}
10\left(-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}\right)-2 \stackrel{?}{=} 0 & 10\left(\frac{2}{5}\right)^{2}+\left(\frac{2}{5}\right)-2 \stackrel{?}{=} 0 \\
10\left(\frac{1}{4}\right)+\left(-\frac{1}{2}\right)-2 \stackrel{?}{=} 0 & 10\left(\frac{4}{25}\right)+\left(\frac{2}{5}\right)-2 \stackrel{?}{=} 0 \\
2=2 & 2=2
\end{array}
$$

Example 2 Using the Square Root Property (page 112)

Solve each quadratic equation.
(a) $x^{2}=29 \Rightarrow x= \pm \sqrt{29}$
(b) $x^{2}=-144 \Rightarrow x= \pm 12 i \quad \sqrt{-144}=\sqrt{-1} \cdot \sqrt{144}= \pm 12 i$
(c) $(x-8)^{2}=24$

$$
\begin{array}{ll}
8= \pm \sqrt{24} & \\
-8= \pm 2 \sqrt{6} & \\
& \sqrt{24}=\sqrt{4} \cdot \sqrt{6}=2 \sqrt{6} \\
x=8 \pm 2 \sqrt{6} &
\end{array}
$$

1.4 Example 3 Using the Method of Completing the Square, $a=1$ (cont.)

Factor the resulting trinomial as a perfect square and combine terms on the other side.

$$
(x+5)^{2}=45
$$

Use the square root property to complete the solution.

$$
\begin{aligned}
x+5 & = \pm \sqrt{45} \\
x & =-5 \pm \sqrt{45}=-5 \pm 3 \sqrt{5}
\end{aligned}
$$

Solution set: $\{-5 \pm 3 \sqrt{5}\}$

1.4 Example 4 Using the Method of Completing the Square, $a \neq 1$ (cont.)

Factor the resulting trinomial as a perfect square and combine terms on the other side.

$$
\left(x+\frac{3}{4}\right)^{2}=-\frac{11}{16}
$$

Use the square root property to complete the solution.

$$
\begin{aligned}
\left(x+\frac{3}{4}\right)^{2} & =-\frac{11}{16} \\
x+\frac{3}{4} & = \pm i \sqrt{\frac{11}{16}} \\
x & =-\frac{3}{4} \pm i \sqrt{\frac{11}{16}}=-\frac{3}{4} \pm \frac{\sqrt{11}}{4} i
\end{aligned}
$$

Solution set: $\left\{-\frac{3}{4} \pm \frac{\sqrt{11}}{4} i\right\}$

1.4 Example 5 Using the Quadratic Formula (Rea	tions cont.)
$\begin{aligned} x & =\frac{-(6) \pm \sqrt{(6)^{2}-4(1)(-3)}}{2(1)} \\ & =\frac{-6 \pm \sqrt{36+12}}{2}=\frac{-6 \pm \sqrt{48}}{2} \\ & =\frac{-6 \pm 4 \sqrt{3}}{2} \quad \sqrt{48}=\sqrt{16} \cdot \sqrt{3}=4 \sqrt{3} \\ & =-3 \pm 2 \sqrt{3} \end{aligned}$ Solution set: $\{-3 \pm 2 \sqrt{3}\}$	
	${ }^{1.41}$

1.4 Example 4 Using the Method of Completing the Square $a \neq 1$ (page 113)

Solve $4 x^{2}+6 x+5=0$ by completing the square.
Divide both sides of the equation by a, 4 .

$$
x^{2}+\frac{6}{4} x+\frac{5}{4}=0
$$

Rewrite the equation so that the constant is alone on one side of the equation.

$$
x^{2}+\frac{6}{4} x=-\frac{5}{4}
$$

Square half the coefficient of \boldsymbol{x}, and add this square to both sides of the equation.

$$
\begin{aligned}
x^{2}+\frac{6}{4} x+\left(\frac{1}{2} \cdot \frac{6}{4}\right)^{2} & =-\frac{5}{4}+\left(\frac{1}{2} \cdot \frac{6}{4}\right)^{2} \\
x^{2}+\frac{3}{2} x+\frac{9}{16} & =-\frac{5}{4}+\frac{9}{16}
\end{aligned}
$$

Copyright 2008 Pearson Addison-Wesily. All rights reserved.
1.4 Example 5 Using the Quadratic Formula (Real Solutions) (page 115)

Solve $x^{2}+6 x=3$.
Write the equation in standard form.

$$
x^{2}+6 x-3=0
$$

$a=1, b=6, c=-3$

$$
\begin{aligned}
& c=-3 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
x=\frac{-(6) \pm \sqrt{(6)^{2}-4(1)(-3)}}{2(1)}
$$

1.4 Example 6 Using the Quadratic Formula (Nonreal Complex Solutions) (page 115)

Solve $4 x^{2}=3 x-5$.
Write the equation in standard form.

$$
4 x^{2}-3 x+5=0
$$

$a=4, b=-3, c=5$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \text { Quadratic formula } \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(4)(5)}}{2(4)}
\end{aligned}
$$

1.4 Example 6Using the Quadratic Formula (Nonreal Complex Solutions) (page 115)
$\qquad$$x$ $=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(4)(5)}}{2(4)}$ $=\frac{3 \pm \sqrt{9-80}}{8}=\frac{3 \pm \sqrt{-71}}{8}$ $=\frac{3 \pm i \sqrt{71}}{8}$ $=\frac{3}{8} \pm \frac{\sqrt{71}}{8} i$ Solution set: $\left\{\frac{3}{8} \pm \frac{\sqrt{71}}{8} i\right\}$

Solving for a Quadratic Variable in a Formula (page 116)	
Solve $V=\frac{1}{3} \pi r^{2} h$ for r. Use roots. $\begin{aligned} & V=\frac{1}{3} \pi r^{2} h \\ & 3 V=\pi r^{2} h \\ & \frac{3 V}{\pi h}=r^{2} \\ & r= \pm \sqrt{\frac{3 V}{\pi h}} \\ & r= \pm \sqrt{\frac{3 V}{\pi h}} \cdot \frac{\sqrt{\pi h}}{\sqrt{\pi h}} \\ & r= \pm \sqrt{3 V \pi h} \\ & \pi h \end{aligned}$	n taking square Goal: Isolate r. Multiply by 3 . Divide by πh. Square root property Rationalize the denominator. Simplify.

1.4 Example 9(a) Using the Discriminant (page 118)

Determine the number of distinct solutions, and tell whether they are rational, irrational, or nonreal complex numbers.

$$
\begin{gathered}
4 x^{2}-12 x+9=0 \\
a=4, b=-12, c=9 \\
b^{2}-4 a c=(-12)^{2}-4(4)(9)=0
\end{gathered}
$$

There is one distinct rational solution.

1.4 Example 7 Solving a Cubic Equation (page 116)

Solve $x^{3}-125=0$.

$$
(x-5)\left(x^{2}+5 x+25\right)=0 \quad \begin{aligned}
& \text { Factor as a difference } \\
& \text { of cubes. }
\end{aligned}
$$

$x-5=0 \quad$ or $\quad x^{2}+5 x+25=0$
$x=5$
$x=\frac{-5 \pm \sqrt{5^{2}-4(1)(25)}}{2(1)}$
Zero-factor property
Quadratic formula
with $a=1, b=5$,
$c=25$
$=\frac{-5 \pm \sqrt{25-100}}{2}=\frac{-5 \pm \sqrt{-75}}{2}$
$=\frac{-5 \pm 5 i \sqrt{3}}{2}=\frac{-5}{2} \pm \frac{5 \sqrt{3}}{2} i$
Solution set: $\left\{5, \frac{-5}{2} \pm \frac{5 \sqrt{3}}{2} i\right\}$
$1-44$

1.4 Example 8(b) Solving for a Quadratic Variable in a Formula (page 116)

Solve $2 m y^{2}-n y=3 p(m \neq 0)$ for y. Use when taking square roots.

$2 m y^{2}-n y-3 p=0$	Write in standard form.
$y=\frac{-(-n) \pm \sqrt{(-n)^{2}-4(2 m)(-3 p)}}{2(2 m)}$	Use the quadratic formula with $a=2 m$, $b=-n, c=-3 p$.
$y=\frac{n \pm \sqrt{n^{2}+24 m p}}{4 m}$	Simplify.
Copyighte 2008 Peason Addison.Wesese. Al rights sesemed.	

1.4 Example 9(b) Using the Discriminant (page 118)

Determine the number of distinct solutions, and tell whether they are rational, irrational, or nonreal complex numbers.

$$
\begin{gathered}
3 x^{2}+x=-5 \\
3 x^{2}+x+5=0 \quad \text { Write in standard form. } \\
a=3, b=1, c=5 \\
b^{2}-4 a c=1^{2}-4(3)(5)=-59
\end{gathered}
$$

There are two distinct nonreal complex solutions.

1.4 Example 9(c) Using the Discriminant (page 118)

Determine the number of distinct solutions, and tell whether they are rational, irrational, or nonreal complex numbers.

$$
\begin{gathered}
2 x^{2}=6 x+7 \\
2 x^{2}-6 x-7=0 \quad \text { Write in standard form. } \\
a=2, b=-6, c=-7 \\
b^{2}-4 a c=(-6)^{2}-4(2)(-7)=92
\end{gathered}
$$

There are two distinct irrational solutions.

