

- 1.1 Linear Equations
- 1.2 Applications and Modeling with Linear Equations
- 1.3 Complex Numbers
- 1.4 Quadratic Equations

1.1 Linear Equations Basic Terminology of Equations Solving Linear Equations Identifies, Conditional Equations, and Contradictions Solving for a Specified Variable (Literal Equations)

1.1 Example 1 Solving a Linear Equation (page 85)			
Solve $-4(3x-5) = 3-(8x+7)$.			
-4(3x-5) = 3-(8x+7)			
-12x + 20 = 3 - 8x - 7	Distributive property		
-12x + 20 = -4 - 8x	Combine terms.		
24 = 4 <i>x</i>	Add 4 to both sides. Add $12x$ to both sides. Combine terms.		
6 = x	Divide both sides by 4.		
Solution set:	: {6}		
Conversabl © 2008 Deserves Addison-Mariau All rights researed		1-4	

1.2 **Example 1** Find the Dimensions of a Square (page 91)

The length of a rectangle is 2 in. more than the width. If the length and width are each increased by 3 in., the perimeter of the new rectangle will be 4 in. less than 8 times the width of the original rectangle. Find the dimensions of the original rectangle.

Assign variables:

Let x = the length of the original rectangle.

2 Example 1 Find the Dimensions of a Square (cont.) The perimeter of the new rectangle is The perimeter of the new rectangle is 4 in. less than 8 times the width of the original rectangle, so we have

.2 Example 3 Solving a Mixture Problem (cont.)

Create a table to show the relationships in the problem.

Strength	Gallons of Solution	Gailons of Pure Antifreeze
25%	<i>R</i> .	.25x
10%	5	.10.5=.5
15%	x + 5	.15(x+5)

Write an equation: .25x + .5 = .15(x + 5)

```
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.
```

```
1-17
```

1-13

2 Example 4 Solving an Investment Problem (page 94)

Last year, Owen earned a total of \$1456 in interest from two investments. He invested a total of \$28,000, part at 4.8% and the rest at 5.5%. How much did he invest at each rate?

Let x = amount invested at 4.8%. Then 28,000 - x = amount invested at 5.5%.

1-18

1-14

1.2 Example 5 Modeling the Prevention of Indoor Pollutants (page 95)

A range hood removes contaminants at a rate of F liters of air per second. The percent P of contaminants that are also removed from the surrounding air can be modeled by the linear equation

P = 1.06F + 7.18,

where $10 \le F \le 75$. What flow *F* must a range hood have to remove 70% of the contaminants from the air?

© 2008 Pear

1-20

1.3 Complex Numbers Basic Concepts of Complex Numbers Operations on Complex Numbers

1.3 Example 1 Writing
$$\sqrt{-a}$$
 as $i\sqrt{a}$ (page 104)
Write as the product of a real number and *i*.
(a) $\sqrt{-81} = i\sqrt{81} = 9i$
(b) $\sqrt{-55} = i\sqrt{55}$
(c) $\sqrt{-98} = i\sqrt{98} = i\sqrt{49 \cdot 2} = 7i\sqrt{2}$

1.3 Example 2 Finding Products and Quotients Involving
Negative Radicands (page 105)
Multiply or divide. Simplify each answer.
(a)
$$\sqrt{-21} \cdot \sqrt{-21} = i\sqrt{21} \cdot i\sqrt{21} = i^2 \cdot (\sqrt{21})^2$$

 $= -1 \cdot 21 = -21$
(b) $\sqrt{-5} \cdot \sqrt{-30} = i\sqrt{5} \cdot i\sqrt{30} = i^2\sqrt{150}$
 $= i^2\sqrt{25 \cdot 6} = -5\sqrt{6}$

1.3 Example 2 Finding Products and Quotients Involving
Negative Radicands (cont.)
Multiply or divide. Simplify each answer.
(c)
$$\sqrt{-42}_{\sqrt{-3}} = i\sqrt{42}_{\sqrt{3}} = \sqrt{42}_{3} = \sqrt{14}$$

(d) $\sqrt{-63}_{\sqrt{21}} = i\sqrt{63}_{\sqrt{21}} = i\sqrt{\frac{63}{21}} = i\sqrt{3}$

1.3 Example 4 Adding and Subtracting Complex Numbers
(page 106)
Find each sum or difference.
(a)
$$(4 - 5i) + (-5 + 8i) = [4 + (-5)] + (-5i + 8i)$$

 $= -1 + 3i$
(b) $(-6 + 3i) + (12 - 9i) = 6 - 6i$
(c) $(-10 + 7i) - (5 - 3i) = (-10 - 5) + [7i + (3i)]$
 $= -15 + 10i$
(d) $(15 - 8i) - (-10 + 4i) = 25 - 12i$
Corpus 2009 Peaces Addoor-Weeky, All optic reserved.
1-26

1.4 Example 3 Using the Method of Completing the Square,

$$a = 1$$
 (cont.)
Factor the resulting trinomial as a perfect square and combine
terms on the other side.
 $(x + 5)^2 = 45$
Use the square root property to complete the solution.
 $x + 5 = \pm\sqrt{45}$
 $x = -5 \pm\sqrt{45} = -5 \pm 3\sqrt{5}$
Solution set: $\{-5 \pm 3\sqrt{5}\}$

1.4 Example 4 Using the Method of Completing the Square,

$$a \neq 1$$
 (page 113)
Solve $4x^2 + 6x + 5 = 0$ by completing the square.
Divide both sides of the equation by a , 4.
 $x^2 + \frac{6}{4}x + \frac{5}{4} = 0$
Rewrite the equation so that the constant is alone on one side
of the equation.
 $x^2 + \frac{6}{4}x = -\frac{5}{4}$
Square half the coefficient of x , and add this square to both
sides of the equation.
 $x^2 + \frac{6}{4}x + (\frac{1}{2}, \frac{6}{4})^2 = -\frac{5}{4} + (\frac{1}{2}, \frac{6}{4})^2$
 $x^2 + \frac{3}{2}x + \frac{9}{16} = -\frac{5}{4} + \frac{9}{16}$

1.4 Example 8(b) Solving for a Quadratic Variable in a Formula (page 116) Solve $2my^2 - ny = 3p \ (m \neq 0)$ for y. Use when taking square roots. $2my^2 - ny - 3p = 0$ Write in standard form. $y = \frac{-(-n) \pm \sqrt{(-n)^2 - 4(2m)(-3p)}}{2(2m)}$ Use the quadratic formula with a = 2m, b = -n, c = -3p. $y = \frac{n \pm \sqrt{n^2 + 24mp}}{4m}$ Simplify. 146

1.4 Example 9(a) Using the Discriminant (page 118)

Determine the number of distinct solutions, and tell whether they are *rational*, *irrational*, or *nonreal complex* numbers.

$$4x^{2} - 12x + 9 = 0$$

$$a = 4, b = -12, c = 9$$

$$b^{2} - 4ac = (-12)^{2} - 4(4)(9) = 0$$

There is one distinct rational solution.

1-47

4 Example 9(b) Using the Discriminant (page 118)

Determine the number of distinct solutions, and tell whether they are *rational*, *irrational*, or *nonreal complex* numbers.

$$3x^{2} + x = -5$$

 $3x^{2} + x + 5 = 0$ Write in standard form
 $a = 3, b = 1, c = 5$
 $b^{2} - 4ac = 1^{2} - 4(3)(5) = -59$

There are two distinct nonreal complex solutions.

1-48

1.4 Example 9(c) Using the Discriminant (page 118)

ight © 2008 Pearson Addison-Wesley. All rights reserved.

Determine the number of distinct solutions, and tell whether they are *rational*, *irrational*, or *nonreal complex* numbers.

 $2x^{2} = 6x + 7$ $2x^{2} - 6x - 7 = 0$ Write in standard form. a = 2, b = -6, c = -7 $b^{2} - 4ac = (-6)^{2} - 4(2)(-7) = 92$ There are two distinct irrational solutions.

1-49