

1.5	Applications and Modeling with Quadratic Equations
	Sets of Numbers and the Number Line Exponents Order of Operations Properties of Real Numbers Order on the Number Line Absolute Value
Copyright © 2008 Pe	arson Addison-Wesley: All rights reserved. 1-58

Copyright © 2008 Pearson Addison-Wesley. All rights reserved

1-59

© 2008 Pe

on Addison-Wesley. All rights r

1-60

1.5 Example 1 Solving a Problem Involving the Volume of a Box (cont.)		
$V = lwh = 7500 \text{ cm}^3$		
7500 = (2x - 20)(x - 20)(10)		
$7500 = 20x^2 - 600x + 4000$	Multiply.	
$0 = 20x^2 - 600x - 3500$	Subtract 7500.	
$0 = x^2 - 30x - 175$	Divide by 20.	
0 = (x+5)(x-35)	Factor.	
x + 5 = 0 or $x - 35 = 0$	Zero-factor	
x = -5 or $x = 35$	Solve.	
Length cannot be negative. Reject $x = -5$		
The dimensions of the metal piece are 35 cm x 70 cm.		
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.	1-61	

1-62

1.5 Example 2 Solving a Problem Involving the Pythagorean Theorem (cont.)	
Since <i>s</i> represents length, 0 is not a reasonable answe The lengths of the sides of the property are 80 m, 2(80) - 10 = 150 m, and $2(80) + 10 = 170$ m.	٢.
Capyright & 2008 Pearson Addison-Weakly. All rights reserved.	-64

ight © 2008 Pearson Addison-Wesley. All rights res

1-65

a Projectile (cont.)
Find the value(s) of t so that the height s is 100. $s = -4.9t^2 + 73.5t$
$100 = -4.9t^2 + 73.5t \implies 4.9t^2 - 73.5t + 100 = 0$
Use the quadratic formula to solve for t.
$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2c} \qquad a = 4.9, b = -73.5, c = 100$

$$t = \frac{2a}{(-73.5) \pm \sqrt{(-73.5)^2 - 4(4.9)(100)}}$$
$$= \frac{73.5 \pm \sqrt{3442.25}}{9.8} \approx 1.51 \text{ or } 13.49$$

1.5 Example 3(b) Solving a Problem Involving the Height of a Projectile (page 124) How long will it take for the projectile to return to the ground? The projectile returns to the ground when $\mathbf{s} = 0$. $0 = -4.9t^2 + 73.5t$ 0 = t(-4.9t + 73.5)t = 0 or -4.9t + 73.5 = 0t = 15t = 0 represents the start time. It takes 15 seconds for the projectile to return to the ground. t = 2000 1.5 Example 4(a) Analyzing Sport Utility Vehicle (SUV) Sales (page 126) Based on figures from 1990–2001, the equation $S = .016x^2 + .124x + .787$ models sales of SUVs from 1990 to 2001, where *S* represents sales in millions, and *x* = 0 represents 1990, *x* = 1 represents 1991, etc. Use the model to determine sales in 2000 and 2001. Compare the results to the actual figures of 3.6 million and 3.7 million.

1.5 Example 4(a) Analyzing Sport Utility Vehicle (SUV) Sal (cont.	es)
$S = .016x^2 + .124x + .787$	
For 2000, $x = 10$. $S = .016(10)^2 + .124(10) + .787 \approx 3.6$ million	
For 2001, $x = 11$. $S = .016(11)^2 + .124(11) + .787 \approx 4.1$ million	
For 2000, the prediction is equal to the actual figure of 3.6 million.	
For 2001, the prediction is greater than the actual figure of 3.7 million.	
Copyright © 2008 Pearson Addison-Wesley. All rights reserved. 1-70	

1.6 Example 1(a) Solving Rational Equations that Lead to
Linear Equations (page 133)
Solve
$$\frac{2x-3}{2} + \frac{5x}{x+1} = x$$
.
The least common denominator is $2(x + 1)$, which equals
0 when $x = -1$. Therefore, -1 cannot be a solution of the
equation.

1.6 Example 1(a) Solving Rational Equations that Lead to
Linear Equations (cont.)

$$\frac{2x-3}{2} + \frac{5x}{x+1} = x$$

$$2(x+1)\left(\frac{2x-3}{2} + \frac{5x}{x+1}\right) = 2(x+1)x \quad \text{Multiply by the LCD,} \\ (x+1)(2x-3) + 2(5x) = 2x^2 + 2x \quad \text{Simplify.} \\ 2x^2 - 3x + 2x - 3 + 10x = 2x^2 + 2x \quad \text{Multiply.} \\ 2x^2 + 9x - 3 = 2x^2 + 2x \quad \text{Combine terms.} \\ 7x = 3 \Rightarrow x = \frac{3}{7}$$
The restriction, $x \neq -1$, does not affect this result.

1.6 Example 2(b) Solving Rational Equations that Lead to Quadratic Equations (page 134)		
Solve $\frac{x}{x+5} + \frac{5}{x-5} = \frac{50}{x^2 - 25}$.		
The least common denominator is $(x + 5)(x - 5) = x^2$ which equals 0 when $x = 5$. Therefore, 5 cannot be solutions of the equation.	- 25,	
Copyright © 2008 Paarson Addison Wesley. All rights reserved.	1-82	

1.6 Example 6 Solving an Equation Containing a Radical (Cube Root) (page 139)		
Solve $\sqrt[3]{5x^2 - 12x + 6} - \sqrt[3]{x} = 0.$		
$\sqrt[3]{5x^2 - 12x + 6} - \sqrt[3]{x} = 0$		
$\sqrt[3]{5x^2 - 12x + 6} = \sqrt[3]{x}$	Isolate one radical.	
$\left(\sqrt[3]{5x^2 - 12x + 6}\right)^3 = \left(\sqrt[3]{x}\right)^3$	Cube both sides.	
$5x^2 - 12x + 6 = x$	Expand.	
$5x^2 - 13x + 6 = 0$	Standard form	
(5x-3)(x-2) = 0	Factor.	
5x - 3 = 0 or $x - 2 = 0$	Zero-factor property	
$x = \frac{3}{5}$ or $x = 2$	Proposed solutions	
Copyright © 2008 Pearson Addison-Wesley, All rights reserved.	1-92	

1.6 Example 9 Solving an Equation that Leads to One Quadratic in Form (page 142)		
Solve $x = (10x^2 - 24)^{1/4}$.		
$x^4 = 10x^2 - 24$	Raise each side to the fourth power.	
$x^4 - 10x^2 + 24 = 0$	Standard form	
Let $u = x^2$, then substitute:		
$u^2 - 10u + 24 = 0$		
$(u-6)(u-4) = 0 \implies u = 6 \text{ or } u = 4$		
Now solve for x. $x^2 = 6 \Rightarrow x = \pm \sqrt{6}$ $x^2 = \frac{1}{\sqrt{6}}$	$=4 \Rightarrow x = \pm 2$	
Corvricht @ 2008 Pearson Addison-Wesley, All richts reserved.	1-101	

1.7 Example 3 Solving a Three-Part Inequality (page 148)		
$1 \le 6x - 8 \le 4$		
$1+8 \le 6x-8+8 \le 4+8$	Add 8.	
9 ≤ 6 <i>x</i> ≤ 12		
$\frac{9}{6} \le \frac{6x}{6} \le \frac{12}{6}$	Divide by 6.	
$\frac{3}{2} \le x \le 2$		
Write the solution set in interval notation and graph it.		
Solution set: 3	2]	
0 1 3 2	+•	
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.	1-106	

1.7 Example 9 Solving a Rational Inequality (page 153)		
Solve $\frac{3x+1}{2x-3}$	< 4.	
Step 1:	$\frac{3x+1}{2x-3} - 4 < 0$	Subtract 4.
	$\frac{3x+1}{2x-3} - \frac{4(2x-3)}{2x-3} < 0$	2x - 3 is the common denominator.
	$\frac{3x+1-8x+12}{2x-3} < 0$	Write as a single fraction.
	$\frac{-5x+13}{2x-3} < 0$	Combine terms in the numerator.
Copyright © 2008 Pearson Add	ison-Wesley. All rights reserved.	1-118

1.8 Example 2(a) Solving Absolute Value Inequalities (page 160)		
4x-6 < 10		
-10 < 4 <i>x</i> - 6 < 10	Property 3	
-4 < 4 <i>x</i> < 16	Add 6.	
-1 < x < 4	Divide by 4.	
Solution set: (-1, 4)		
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.	1-124	

1.8 Example 4(c) Solving Special Cases of Absolute Value
Equations and Inequalities (page 161) $|2-5x| \le -5$ There is no number whose absolute value is less than
-5.Therefore, $|2-5x| \le -5$ is always false.Solution set: Ø

1-129

1.8 Example 5 Using Absolute Value Inequalitie Describe Distances (page 162)	es to	1.8 Example
Write each statement using an absolute v inequality.	value	Suppose unit of 6.
(a) <i>m</i> is no more than 9 units from 3.		
This means that <i>m</i> is 9 units or less from the distance between <i>m</i> and 3 is less that to 9, or $ m-3 \le 9$.	3. Thus in or equal	
(b) <i>t</i> is within .02 unit of 5.8. This means that <i>t</i> is less than .02 unit from Thus the distance between <i>t</i> and 5.8 is let .02, or $ t - 5.8 < .02$.	m 5.8. ess than	Values of satisfy the
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.	1-130	Copyright © 2008 Pearson

6 Using Absolute Value to Model Tolerance y = 5x - 2 and we want y to be within .001 For what values of x will this be true? Write an absolute |y-6| < .001value inequality |(5x-2)-6| < .001Substitute 5x - 2 for y. |5x - 8| < .001-.001 < 5x - 8 < .001Property 3 7.999 < 5x < 8.001 Add 8. 1.5998 < x < 1.6002 Divide by 5. x in the interval (1.5998, 1.6002) will e condition. 1-131 Copyright © 2008 Pe