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1.5 Example 1 Solving a Problem Involving the Volume of a
20)4 (page 122)

A box with volume 7500 cm? is to be formed from a sheet
of metal whose length is twice the width. Equal size
squares measuring 10 cm on a side are to be cut from
the corners of the metal sheet in order to form the box.
What are the dimensions of the original piece of metal?
Assign variables:

Let x = the width of the original rectangle.

Then, 2x = the length of the original rectangle.
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1.5 Example 1 Solving a Problem Involving the Volume of a
Box (cont.)

The box is formed by cutting 10 cm + 10 cm from
both the length and the width.

x — 20 = the width of the bottom of the box

2x — 20 = the length of the bottom of the box

10 = the height of the box

2

. 10 - 28 1]y ol

r :l»DO 1-20

(i 0 [THL
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1.5 Example 1 Solving a Problem Involving the Volume of a
Box (cont)
V = Iwh = 7500 cm?
7500 = (2x - 20)(x ~ 20)(10)
7500 = 20x* - 600x + 4000  Muliply.
0= 20x° - 600x - 3500  Subtract 7500.

0=x%—30x-175 Divide by 20.
0= {x+5)x~-35) Factor.
x+5=0 or x-35=0  Zerofactor
property
¥=-5 or x =35 Solve.

Length cannot be negative. Reject x = -5
The dimensions of the metal piece are 35 cm x 70 cm.
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1.5 Example 2 Solving a Problem Involving the
Pythagorean Theorem (page 123)

A piece of property is in the shape of the right triangle.
The longer leg is 10 m shorter than twice the length of
the shorter leg, and the hypotenuse is 20 m longer than
the longer leg. Find the lengths of the sides of the

property.

Let s = the length of the shorter leg.

Then, 2s — 10 = the length of longer leg.

(2s —10) + 20 = 2s + 10 = the length of the hypotenuse

! T o~
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1.5 Example 2 Solving a Problem Involving the
Pythagorean Theorem (cont.)
Use the Pythagorean theorem.
s? +(25- 108 =(25+10)°
s* +4s% - 405 +100 = 4s% + 405 +100  Jouare the

a?+b?2=c?

binomials.

557 ~40s +100 = 45% +40s +100  Combine terms.
5% 805 =0 Standard form
§(s-80)=0 Factor.

s=0 or s-80=0 5?58?33“”
5 =80 Solve.
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1.5 Example 2 Solving a Problem Involving the
Pythagorean Theorem (cont.)
Since s represents length, 0 is not a reasonable answer.

The lengths of the sides of the property are 80 m,
2(80)— 10 = 150 m, and 2(80) + 10 =170 m.

Pearson . Al

1.5 Example 3(a) Solving a Problem Involving the Height of
a Projectile (page 124)

If a projectile is shot upward from the ground with an
initial velocity of 73.5 m per sec, neglecting air
resistance, its height (in meters) above the ground t
seconds after the projection is given by

5=-49t% 4 T35

After how many seconds will the projectile be 100 m
above the ground?
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1.5 Example 3(a) Solving a Problem Involving the Height of
a Projectile (cont)

Find the value(s) of t so that the height s is 100.
5 =-4.9t% + 73 5¢
100 = -4.9¢% + 73.5t = 4.9t* ~73.5t +100=0
Use the quadratic formula to solve for t.
—
¢ o b b® —dac
Z2a
 —{(-73.5)+ J(-73.5 - 4(4.9)(100)
- 2(4.9)

= T3S2 SHZED . 151001348
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a=4.9,b=-735,¢c=100

t

1.5 Example 3(a) Solving a Problem Involving the Height of
a Projectile (cont,

Both solutions are acceptable since the projectile
reaches 100 m twice, once as it rises and once as it falls.

The projectile will be 100 m above the ground after 1.51
seconds and after 13.49 seconds.
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1.5 Example 3(b) Solving a Problem Involving the Height of

a Projectile (page 124)

How long will it take for the projectile to return to the
ground?

The projectile returns to the ground when s = 0.
0= -4.9t% +73.5¢t
0w t{-4.5+735)
t=0or -49f+735=0
=15
t = 0 represents the start time.

It takes 15 seconds for the projectile to return to the
ground.
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1.5 Example 4(a) Analyzing Sport Utility Vehicle (SUV) Sales
(page 126)

Based on figures from 1990-2001, the equation
5= .016x + 124x + 787

models sales of SUVs from 1990 to 2001,where S
represents sales in millions, and x = O represents
1990, x = 1 represents 1991, etc.

Use the model to determine sales in 2000 and 2001.
Compare the results to the actual figures of 3.6
million and 3.7 million.

‘Copyright © 2008 Pearson Addison-Wesley. Al fights reserved.

1.5 Example 4(a) Analyzing Sport Utility Vehicle (SUV) Sales

(cont.)
5= .016x" +.124x + 787
For 2000, x = 10.

$=.016(10)° +.124(10)+.787 = 3.6 million

For 2001, x = 11.
S= .016(1 1)2 +.124(1 1)+.787 = 4.1 million

For 2000, the prediction is equal to the actual figure
of 3.6 million.

For 2001, the prediction is greater than the actual
figure of 3.7 million.

Pearson . Al

1.5 Example 4(b) Analyzing Sport Utility Vehicle
(SUV) Sales (page 126)

According to the model, in what year did sales reach
3 million? (Round down to the nearest year.)

5= .016x% + 124x + 787
Let S =0, then solve for x.

3=.016x" +.124x% + TBT = 0 = 016x° +.124x - 2.213

 —124+.124% - 4(.016)(-2.213)
x= 2(.016)

¥=850rx=-163

Quadratic formula
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1.5 Example 4(b) Analyzing Sport Utility Vehicle

(SUV) Sales (cont,)

Reject the negative solution, and round 8.5 down to 8.
The year 1998 corresponds to x = 8.

SUV sales reached 3 million in 1998.

Copyright © 2008 Pearson Addison-Wesley. Al ights reserved.

1.6/ Other Types of Equations and
Applications

Rational Equations Work Rate Problems Equations with
Radicals Equations Quadratic in Form

Copyright © 2008 Pearson ‘Addison-Wesley. Al ights reserved.




1.6 Example 1(a) Solving Rational Equations that Lead to
Linear Equations (page 133)

2v-3  Sx
2+x+1x

Solve

The least common denominator is 2(x + 1), which equals
0 when x = -1. Therefore, =1 cannot be a solution of the
equation.

Copyright © 2008 Pearson Addison-Wesley. Al ights reserved.

1.6 Example 1(a) Solving Rational Equations that Lead to
Linear Equations (cont)

x+1](2" -3, 5x1)—2(x+1)x zfl(zlipi))/lbythe LCD,

(x +1)(2x-3)+2(5x) = 2x* +2x  Simpliy.
2x% —Ax+2x—3+10x = 2% +2%  Multiply.

2x° +Ox-3=2x"+2x Combine terms.

Tx=3=x=3

The restriction, x # -1, does not affect this result.

Pearson Alright

1.6 Example 1(a) Solving Rational Equations that Lead to
Linear Equations (cont)

Now check.

Solution set: {;]

Pearson . Al

1.6 Example 1(b) Solving Rational Equations that Lead to
Linear Equations (page 133)

The least common denominator is x = 5, which
equals 0 when x = 5. Therefore, 5 cannot be a
solution of the equation.

Pearson Al right

1.6 Example 1(b) Solving Rational Equations that Lead to

Linear Equations (cont.)

_ D
x +515

(x—5)(x_5+5)=(x'5)(%) Xx—5.

X+5(x-5)=5 Simplify.
Gx-25=5=26x=30=x=5

The only possible solution is 5. However, the
variable is restricted to real numbers except 5.

Solution set: @

Copyright © 2008 Pearson Addison-Wesley. Al ights reserved.

Multiply by the LCD,

1.6 Example 2(a) Solving Rational Equations that Lead to
Quadratic Equations (page 134)

-7
T

x=5_1_
Solvex 37y

The least common denominator is x{¥ - 3} = ¥ -3y,
which equals 0 when x = 0 or x = 3. Therefore, 0 and 3
cannot be solutions of the equation.




1.6 Example 2(a) Solving Rational Equations that Lead to
Quadratic Equations (cont,)

- -7 Multiply by th
x(x-3)(E=F+ 1) = x(x-3) | LSy

x-3 x© - 3x
x(k-5)+(n-3)=-F Distributive
W Bxtx-3=-T property
X _dx+d=0 Standard form

(x=2Hx-2)=0 Factor.
x-2=0=x=2
The restrictions x # 0 and x # 3 do not affect the result.
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1.6 Example 2(a) Solving Rational Equations that Lead to
Quadratic Equations (cont.)

Now check.

£
1
o

+

ralpa
il !
cajon ke
+

=
|

-

k.l

3]
—

n-a

||

ad
+

M~ paa A= 3 |-
UL

Bl Ml"d 3,

I
-
Y

Solution set: {2}
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1.6 Example 2(b) Solving Rational Equations that Lead to

Quadratic Equations (page 134)

5 __ 50
-5 y¥ops

X
v +
Solve x+5 x

The least common denominator is | x + SJ{x = &) = X =25,
which equals 0 when x = 5. Therefore, 5 cannot be
solutions of the equation.

Pearson . Al

1.6 Example 2(b) Solving Rational Equations that Lead to
Quadratic Equations (cont)

x 5 __ 50
x+5 x-5 42 _o9g

5 50
(x+5](x-5)(xis+x_5)=("+5)("‘5)[ 2_25]
x[x-5)+5(x+5)=50
x —Bx+5x+25 =50
¥ =25=x=:5

The possible solutions are 5. However, the variable
is restricted to real numbers except 5.

Solution set: @

Pearson Alrigh 1-83

1.6 Example 3 Solving a Work Rate Problem (page 135)

Lisa and Keith are raking the leaves in their backyard.
Working alone, Lisa can rake the leaves in 5 hr, while
Keith can rake them in 4 hr. How long would it take
them to rake the leaves working together?

Assign variables.

Let x = the amount of time it would take them to rake
the leaves together.

In 1 hr, Lisa can do + of the job by herself.

In 1 hr, Keith can do % of the job by himself.

Copyright © 2008 Pearson Addison-Wesley. Al ights reserved.

1.6 Example 3 Solving a Work Rate Problem (cont.)

Write an equation.

Part of the
r t Job
Accomplished
. 1 X
Lisa g X g,\ At
Keith % X %‘/

partof the partofthe _One whole
job by Lisa job by Ke#h job
e
ES o _
5 T % 1

Pearson Allright




1.6 Example 3 Solving a Work Rate Problem (cont.)

==

(4.1
FN

EU(%+%) =20-1 Multiply by the LCD, 20.

4x +5x =20 Distributive property
- 20 2
Gx=20=x g z 5

It will take Lisa and Keith Eg

rake the leaves.

hr working together to

Copyright © 2008 Pearson Addison-Wesley. Al ights reserved.

1.6 Example 4 Solving an Equation Containing a Radical
Square Root) (page 138)

Solve x—+/dx+12 =0,

x-4Jdx+12=0
x=+4%4+12 Isolate the radical.

X =dx+12 Square both sides.

X —dx-12=0 Solve the quadratic
equation.
(x-B)x+2)=0 Factor.

x=6=0 or x+2=0
¥=8 or x=-2

Zero-factor property
Proposed solutions

Pearson Alright

1.6 Example 4 Solving an Equation Containing a Radical

Now check.
x—JAx+12=0
2o JaZ)+i220 G- Ja(6}+1220
2 Jalo 6-36-0
~2-220 6-6-0
-4%0 0=0 v

—2 is not a solution.

Solution set: {6}

Pearson . Al

1.6 Example 5 Solving an Equation Containing Two Radicals
(page 138)

Solve v3x+1-+/x+4 =1,
Vax+1-x+d =1
VAx+1=Jr+4+1
(Jm)’ = (Jm + 1)2 Square both sides.

3x+1={u'x +-1}2 +2dx+d +1

Expand.

Ax+l=x+d+2x+4 +1
2x—d=2n+4

Isolate one radical.

Combine terms and
isolate the radical.

Pearson Alrigh 1-89

1.6 Example 5 Solving an Equation Containing Two Radicals

(cont.)
2x—-d=2Jx+4
2
(21 _4}2 = {2-.},:' +4} Square both sides.
4x% - 16x+16=4x+16 Expand.

dx® - 20x =0 Combine terms, then

xz solve the quadratic

-ax=0 equation.
¥(x=5)=0

x=0orx=>5 Possible solutions

Copyioht 2008 Pesson cdiscn ey, Al s esened 190

1.6 Example 5 Solving an Equation Containing Two Radicals
(cont.)

Now check.

Yix+1-x+4 =1

S0+ 1- [0+ 221 | JBE+1- )+ 21
1-221 4-321
=1=1 1=1 «

0 is not a solution.

Solution set: {5}




1.6 Example 6 Solving an Equation Containing a Radical
Cube Root) (page 139)

Solve 52 ~12x +6 - x = 0.
Ysx? -12x+6-Yx =0
Y5u? - 12x+6 =%

(%51{2 -12x +6)3 = (5{;}3

Isolate one radical.

Cube both sides.

1.6 Example 6 Solving an Equation Containing a Radical
Cube Root) (cont)

V5% - 12x+6-Yx =0
Ys(2)f -12(2)+6-3220 | Y521 -12(2)+6-3220
o

Now check.

§-E46-331 Y20-24+6-3220
$-¥i% 32-32%0
D=0 v 0=0 ¢

5}(2 -12x+6=x Expand.
5x’ -13x+6=0 Standard form
[Sx=3)(x-2)=0 Factor.
Sx-3=0 orx-2=10 Zero-factor property

3 .
x=z or x=2

Copyright © 2008 Pearson Addison-Wesley. Al ights reserved.

Proposed solutions
1-92
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1.6 Example 7(a) Solving Equations Quadratic in Form
(page 140)

Solve (x-3)'% -6(x-3)"* +8=0.
Letu=(x-3)"* Then u2=[[x—3]14f={x—3]l12.
v’ -Bu+8=0
(u=a)u-2)=0 Factor.
u-d=0oru-2=0
w=dor w=Z

Substitute.

Zero-factor property

Proposed solutions

Pearson . Al

1.6 Example 7(a) Solving Equations Quadratic in Form

Solve for x by replacing u with (x — 3]

(x-3)"" =4
x-3=4*
x-3=256

X =259

Pearson Al right

(page 140)
14

I:.I - 3]1"4 =2  Substitute.
¥—3=72% Raiseboth sides to the
x-3=16

x =19 Proposed solutions

fourth power.

1.6 Example 7(a) Solving Equations Quadratic in Form (cont))

Now check.
(x-3)"*-6(x-3)"*+8=0
(250-3)"% -6(259-3)'* +820
(256)'? -6(256)"* +820
16-ga)+8i0
O=0 +
(19-3)"?-8(19-3)"* +820
(18] -6(16)"* +820
4-82)+ B0
D=0

Solution set: {19, 259}

Copyright © 2008 Pearson Addison-Wesley. Al ights reserved.

Solve 15x % —4x " =3,
1552 4y '-3=0

1.6 Example 7(b) Solving Equations Quadratic in Form

(page 140)

Subtract 3.

Letu=x"". Theno® =x=

150° - 4u-3=10
(5= 3)(3u+1)=0
Su-3=0 or 3u+1=0

‘Copyright © 2008 Pearson Addison-Wesley. Al rights reserved.

Substitute.

Factor.
Zero-factor property

Proposed solutions




1.6 Example 7(b) Solving Equations Quadratic in Form (cont.)

Solve for x by replacing u with x 1,

1.3 5 S .
X -5=&x 3 X = 3=:a1nc 3
Now check.

47

WA | et

o3 o

1.6 Example 8 Solving Equations Quadratic in Form (page 141)

Solve 18x* - 29x* + 3 = 0.

Let u = x°. Then u” = x*.
180° - 290 +3=10
(2u-3)(8u - 1)=0 Factor.
2u-3=0or Su-1=0

Substitute.

Zero-factor property

1) 117
ol o e |
3 3 u Joru= 3 Proposed solutions
15[9}—1233 5,414
25! & 33
d=3v d=3v
Solution set: {%,—3]
Copyright © 2008 Pearson Addison-Wesley. Al rights reserved. 1-98 Pearson Al right q. 1-99

1.6 Example 8 Solving Equations Quadratic in Form (cont)

Solve for x by replacing u with x2.
=i B or x =3
x=i.,.|'§=i"§ or x=+

Now check.  18x* - 29x% +3=0
18{355-)‘ —29{)125]2 +3l0 18(1)' ~29(1)" +3l0
18(3%)-29(5)+3%0 18(3)-29(1)+3%0
D=0v 0=

Similarly, check x = _h'zi and x = _,31,
Solution set: {i ‘f,i ;]

nnnnn . Al 1-100

1.6 Example 9 Solving an Equation that Leads to One
Quadratic in Form (page 142)

Solve x = (10x* - 24] .

¥ =102 - 74 f%iirstﬁ Sg\(ivr:;ide to the
M o10x* 124 =0 Standard form
Let u = x*, then substitute:
v -10u+24=0

(U-6)u-4)=0 =u=6Goru=4

Now solve for x.

o B x iw.l'E K =4 = x=dD

Pearson Alight d 1-101

1.6 Example 9 Solving an Equation that Leads to One

Quadratic in Form (cont)
x=(10x% - 24)" "

o —2 ~ 14
f=| 10[B] 24|

1'31135]1 4
JE= & v

Now check.
Ty —2 LE ]
-JB=|10[-/8) -24]
ot
_ JE=':3$]1 4
—J6 =6 Nota solution

T4 A
-23[1«:1{-::‘32 -24) 27 (10(2f" - 24)
_2;{15114 2;“'5]14
~242 Nota solution 2=2 ¢

Solution set: {\"'E,E}

Copyright © 2008 Pearson Addison-Wesley. Al rights reserved. 1-102

1.7 |Inequalities

Linear Inequalities  Three-Part Inequalities
Rational Inequalities

Pearson Al right d. 1-103




1.7 Example 1 Solving a Linear Inequality (page 146)

“2x+7T <=5
-2x+7 -7 =-=5-7 subtract 7.

=2x = =12
Divide by —2. Reverse the
-2x o —12  direction of the inequality

—2 —2  symbol when multiplying or
dividing by a negative number.
X=B g byaneg

Solution set: {x|x > 6}

e

] 6

Copyright © 2008 Pearson Addison-Wesley. Al rights reserved. 1-104

1.7 Example 2 Solving a Linear Inequality (page 147)

I-dxz=2x+8
I-4x-Bz22x+8-8 subtracts.
~S-dx=6x
“S-4x+4x=6x+4%  Addax
-5 =6x
-5, 6x .
B~ Divide by 6.
_B )
& ZX =N 6
Write the solution set Solution set: [—=,~ 5]
in interval notation —
and graph it. R
Pearson Al right d. -E 1-105

1.7 Example 3 Solving a Three-Part Inequality (page 148)

1=6x-8=4
1+8=6x-8B+8=4+8 Adds
O=6x=12

% = E?I = % Divide by 6.

j<xe2
Write the solution set in interval notation and graph it.
Solution set: [%,2_
e e — e

° I
Pearson X 1-106
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1.7 Example 4 Solving the Break-Even Point (page 148)

If the revenue and cost of a certain product are given
by R = 45x and C = 30x + 5250, where x is the number
of units produced and sold, at what production level
does R at least equal C?

Set R = C and solve for x.

45% = 30x + 5250
15x = 5250 Subtract 30x.
x =350 Divide by 15.

The break-even point is at x = 350.

This product will at least break even only if the number
of units produced and sold is in the interval [350,==].

Pearson Al right d. 1-107

1.7 Example 5 Solving a Quadratic Inequality (page 149)

Solve x* - 2x - 150,

Step 1: Find the values of x that satisfy x* — 2x —15 =1,
5 -2x-15=0
[%=5)x+3}=10
¥-3=0 or x+3=0
¥=5 or x=-3
Step 2: The two numbers divide a number line into three
regions.

It A Interyed B | labrval © Use closed dots
since the
inequality symbol
includes equality.

Copyright © 2008 Pearson Addison-Wesley. Al ights reserved. 1-108

1.7 Example 5 Solving a Quadratic Inequality (cont)

Step 3: Choose a test value to see if it satisfies the inequality.

Test | is #* -2x-1550
il | vove | True or Faise?

(-5 -2(-5)-1530
2050

A (=3 -5
e

o7 - 2{0) - 1520

Blsg | o s
True
-218)-15%

cpe | 8 [fraE-i
¥ nlsn

The values in interval B make the inequality true.

Solution set: [-3, 5]

Pearson Allright d. 1-109




1.7 Example 6 Solving a Quadratic Inequality (page 150)

Solve 3x* ~11x -4 = 0.

Step 1: Find the values of x that satisfy 3% - 1x-4=0.
Ix® - 1x-4=0
[3x+1)(x-4)=0
dx+1=0 or x—-4=0
®=—1or x=4
Step 2: The two numbers divide a number line into three
regions.

Irtervd A
(==}l

Setarval € Use open dots

(b since the
inequality symbol
does not include
equality.

Tuwrvsd B
(34

|
|
|
!
7
1
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1.7 Example 6 Solving a Quadratic Inequality (cont)

Step 3: Choose a test value to see if it satisfies the inequality.

Test | fs 3 -11x-420
Imtecymt Vo Trus or False?

AY 1) 4
Afmeg) | - [A-ninase

[T

4
3(0* - 140)-4>0
8 (-14) e " ’-4 >0
(F abre
?
-1 ~dw
C 4= 8 3")’ 43’10'i‘>g
?n_!

The values in intervals A and C make the inequality true.

Solution set: [ o, “ul:d-.m]

pearson At 1111

1.7 Example 7 Solving a Problem Involving the Height of a
Projectile (page 151)
If an object is launched from ground level with an

initial velocity of 144 ft per sec, its height in feet t
seconds after launching is s feet, where

5= 1602 + 1441,

When will the object be greater than 128 ft above
ground level?

—15!’2 +144t =128  Sets greater than 128.
—16% 41441 - 128 = 0
t-at+8-0

Subtract 128.

Divide by —16.

112

Pearson . Al

1.7 Example 7 Solving a Problem Involving the Height of a
Projectile (cont)

Step 1: Solve the corresponding equation.

t* -9t +8=0
ff -B}l:.f -1} =0 Factor.
t=8 or t=1 Zero-factor property
Step 2: The two numbers divide a number line into three
regions.
et A 1 Bl | deerr € Use open dots
foen 11 : AT : L since the
=19 et inequality symbol
! | does not include
equality.
1-13

Pearson Al right

1.7 Example 7 Solving a Problem Involving the Height of a
Projectile (cont)

Step 3: Choose a test value to see if it satisfies the inequality.

tdorval Tesd | i -16t* + 142 5 128
Vidim Tryn ot Fatse? |
Gor + 14401
A (=t g [rrevanpm
T
" 54
8 (18) 2 -w,zr'm; veury
True
C:(B=) S Realdan -
7 oo

The values in interval B make the inequality true, so the
solution set is (1, 8).

The object will be greater than 128 ft above ground level
between 1 and 8 seconds after it is launched.

Copyright © 2008 Pearson Addison-Wesley. Al rights reserved. 1-14

1.7 Example 8 Solving a Rational Inequality (page 151)

Solve 6 =4
x-3
Step 1: 8 -4=0 Subtract 4.
K-3
i_”x—_a]gﬂ X — 3 is the common
x-3 x-3 denominator.
G-dx 412 =0 Write as a single
x-3 fraction.
18 -4 =0 Combine terms in the
x=3 numerator.
Pearson Al right d. 1-115
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1.7 Example 8 Solving a Rational Inequality (cont)

Step 2: The quotient changes sign only where x-values make
the numerator or denominator 0.

18-4x=0 or x-3=0
x=2 or x=73

The values% and 3 divide the number line into three regions.
Use an open circle on 3 because it makes the denominator
equal 0.

Inberved A | Bebersal B Ftberval ©
N T
:
|
]

3
|

1-116
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1.7 Example 8 Solving a Rational Inequality (cont)

Step 3: Choose a test value to see if it satisfies the inequality.

Test | Is 524
Interval s
VaEu® | Fiye or False?
A (= 3) 0 |e24
~2 >4 Fulss
8 (3%] a |54
854 True
Clée § |24
[} ] 3> 4 False

The values in interval B make the inequality true.
Solution set: |33 |

Pearson All ight d. 117

1.7 Example 9 Solving a Rational Inequality (page 153)

dx+1
<4
Solve 5.4
. 3x+1
Step 1: T 4= Subtract 4.
3_X+_1__4 2X—3)<0 2x — 3 is the common
2x-3 2x-3 denominator.
Juk1-Bu+12 Write as a single
2x-3 =0 fraction.
Sx 413 =0 Combine terms in the
2x -3 numerator.
Pearson Al 1-118

1.7 Example 9 Solving a Rational Inequality (cont.)

Step 2: The quotient changes sign only where x-values make
the numerator or denominator 0.

-HBx+13=0 or 2x-3=0
=1 or x=3

The values3 and % divide the number line into three regions.
Use open circles because equality is not included.

Miersl A | I B
=4 1 GY

Pearson Alrigh a 1-19

1.7 Example 9 Solving a Rational Inequality (cont)

Step 3: Choose a test value to see if it satisfies the inequality.

Test Is 53 <4
intenal ¥~
Velue | True or Falsa? |
."lv\:‘
A(=3) | o |7
—4}(‘ True
3
wzpt |
8 (3.9} 2 |sigesed
7 <4 Fase
ot
C: (2.« 5 Fna<d
cd Tne
7

The values in intervals A and C make the inequality true.
- . \TRTE
Solution set: [—M.%jLJﬁf.M]

Copyright © 2008 Pearson Addison-Wesley. Al ights reserved. 1-120

1.8 | Absolute Value Equations and

Inequalities

Absolute Value Equations  Absolute Value Inequalities  Special
Cases Absolute Value Models for Distance and Tolerance

Pearson Al right d. 1-121
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1.8 Example 1(a) Solving Absolute Value Equations (page 159)

[B-4x|=7
G-d4x=7 or 9-dx=-7 Property 1

1.8 Example 1(b) Solving Absolute Value Equations (page 159)

|311-21-|J|'-5|

3x+2=x-5 or 3x+2=-(x—5) propery2

—4x=-2 or -4% =-16 subtracto. 2% ==T or Ix+2=-x+5
x=7 or x=4  Divideby—4. x==1 o 4x=3=x=1
Now check. . 4 Now check. )
i U Bt s(3)22 5 | pa)a-
9-2/27 9-1617 L)y 17 2|17
¥ 7 Kl Fl -|| | 4|
7|=7 -7|=7 o, o
T=7 T=T7v e ]E r ?
Solution set: {2' ,4} Solution set: {—%%
Copyright © 2008 Pearson Addison-Wesley. Al rights reserved. 1122 Pearson Al right q. 1-123

1.8 Example 2(a) Solving Absolute Value Inequalities

(page 160)
[4x 6| <10
-10<4x-6<10 Property3
-4 cdx <16 Add 6.
“lcx=4 Divide by 4.
Solution set: (-1, 4)
nnnnn - 1-124

1.8 Example 2(b) Solving Absolute Value Inequalities

(page 160)
l4x-6/=10
4x-6<-10 or dx-6=10 Property 4
dx < —d or 4x =16 Adde.
X <=1 or x =4  Divide by 4.

Solution set: [~ ~1] L[4,

Pearson Al right d. 1-125

1.8 Example 3 Solving Absolute Value Inequalities Requiring

a Transformation (page 161)

|5 Bx|+6 =14
|5 - E-Jl'l =8 Subtract 6.
5-8x=-8 or S5-Bx=8  Propertys
-8x=-13 or -8x=3  subtracts.
x=2 o X< -2 Divide by 8.

Reverse the
direction of the
inequality symbol.

Solution set: i—wl—%]k__l[%lw:l

Copyright © 2008 Pearson Addison-Wesley. Al ights reserved. 1-126

1.8 Example 4(a) Solving Special Cases of Absolute Value
Equations and Inequalities (page 161)

Tx+28|=0

The absolute value of a number will be 0 if that
number is 0.

Therefore, [7x + 28 = 0is equivalent to 7x + 28 = 0.

Solution set: {—4}

Pearson Al right d. 1-127
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1.8 Example 4(b) Solving Special Cases of Absolute Value
Equations and Inequalities (page 161)

[fx -8 -2

The absolute value of a number is always nonnegative.

Therefore, [6x - & = -2 is always true.

Solution set: [—==,==]

Copyright © 2008 Pearson Addison-Wesley. Alrights reserved. 1-128

1.8 Example 4(c) Solving Special Cases of Absolute Value

Equations and Inequalities (page 161)
[2-5x= -5

There is no number whose absolute value is less than
-5.

Therefore, |2 - 5x| = -5 is always false.

Solution set: @

Copyright © 2008 Pearson Addison-Wesley. Al fights reserved. 1-129

1.8 Example 5 Using Absolute Value Inequalities to
Describe Distances (page 162)

Write each statement using an absolute value
inequality.

(a) m is no more than 9 units from 3.

This means that m is 9 units or less from 3. Thus
the distance between m and 3 is less than or equal
to 9, or|m-3[=9.

(b) t is within .02 unit of 5.8 .

This means that t is less than .02 unit from 5.8.
Thus the distance between t and 5.8 is less than
.02, 0r |t-58/<.02

Pearson . Al

1-130

1.8 Example 6 Using Absolute Value to Model Tolerance
(page 162)
Suppose y = 5x — 2 and we want y to be within .001
unit of 6. For what values of x will this be true?
IJ" - ﬁl = 001 Write an absolute

value inequality
||:5#‘ - 2:] - El < 001 Substitute 5x — 2 for y.
[5x 8 <.001
=001<5x-8<.001 Property 3
7.999 < 5x <8.001  Adds.
1.5998 < x < 1.6002 Divide by 5.

Values of x in the interval (1.5998, 1.6002) will
satisfy the condition.

Pearson Al 1-131
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