

1 Equations and Inequalities

1.5 Applications and Modeling with Quadratic Equations

1.6 Other Types of Equations and Applications

1.7 Inequalities

1.8 Absolute Value Equations and Inequalities

1.5 Example 1 Solving a Problem Involving the Volume of a Box (page 122)

A box with volume $7500 \mathrm{~cm}^{3}$ is to be formed from a sheet of metal whose length is twice the width. Equal size squares measuring 10 cm on a side are to be cut from the corners of the metal sheet in order to form the box. What are the dimensions of the original piece of metal?

Assign variables:
Let $x=$ the width of the original rectangle.
Then, $2 x=$ the length of the original rectangle.

1.5 Example 2 Solving a Problem Involving the
 Pythagorean Theorem (page 123)

A piece of property is in the shape of the right triangle.
The longer leg is 10 m shorter than twice the length of the shorter leg, and the hypotenuse is 20 m longer than the longer leg. Find the lengths of the sides of the property.

Let $s=$ the length of the shorter leg.
Then, $2 s-10=$ the length of longer leg.
$(2 s-10)+20=2 s+10=$ the length of the hypotenuse

1.5 Example 2 Solving a Problem Involving the Pythagorean Theorem (cont.)

Since s represents length, 0 is not a reasonable answer.
The lengths of the sides of the property are 80 m , $2(80)-10=150 \mathrm{~m}$, and $2(80)+10=170 \mathrm{~m}$.

1.5 Example 3(a) Solving a Problem Involving the Height of a Projectile (cont.)

Find the value(s) of \boldsymbol{t} so that the height \boldsymbol{s} is 100.

$$
s=-4.9 t^{2}+73.5 t
$$

$$
100=-4.9 t^{2}+73.5 t \Rightarrow 4.9 t^{2}-73.5 t+100=0
$$

Use the quadratic formula to solve for t.

$$
\begin{aligned}
t & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad a=4.9, b=-73.5, c=100 \\
t & =\frac{-(-73.5) \pm \sqrt{(-73.5)^{2}-4(4.9)(100)}}{2(4.9)} \\
& =\frac{73.5 \pm \sqrt{3442.25}}{9.8} \approx 1.51 \text { or } 13.49
\end{aligned}
$$

Copyrigh © 2008 Pearson Addison-Wesley. All rights reserved.

1.5 Example 2 Solving a Problem Involving the

 Pythagorean Theorem (cont.)Use the Pythagorean theorem.

$$
\begin{array}{rlrl}
s^{2}+(2 s-10)^{2} & =(2 s+10)^{2} & & a^{2}+b^{2}=c^{2} \\
s^{2}+4 s^{2}-40 s+100 & =4 s^{2}+40 s+100 & & \begin{array}{l}
\text { Square the } \\
\text { binomials. }
\end{array} \\
5 s^{2}-40 s+100 & =4 s^{2}+40 s+100 & & \text { Combine terms. } \\
s^{2}-80 s & =0 & & \text { Standard form } \\
s(s-80) & =0 & \text { Factor. } \\
s=0 \text { or } s-80=0 & \text { Zero-factor } \\
s=80 & \text { property } \\
\text { Solve. }
\end{array}
$$

1.5 Example 3(a) Solving a Problem Involving the Height of a Projectile (page 124)

If a projectile is shot upward from the ground with an initial velocity of 73.5 m per sec , neglecting air resistance, its height (in meters) above the ground t seconds after the projection is given by

$$
s=-4.9 t^{2}+73.5 t
$$

After how many seconds will the projectile be 100 m above the ground?

1.5 Example 3(a) Solving a Problem Involving the Height of a Projectile (cont.)

Both solutions are acceptable since the projectile reaches 100 m twice, once as it rises and once as it falls.

The projectile will be 100 m above the ground after 1.51 seconds and after 13.49 seconds.

1.5 Example 3(b) Solving a Problem Involving the Height of

 a Projectile (page 124)How long will it take for the projectile to return to the ground?
The projectile returns to the ground when $\boldsymbol{s}=0$.

$$
\begin{gathered}
0=-4.9 t^{2}+73.5 t \\
0=t(-4.9 t+73.5) \\
t=0 \text { or }-4.9 t+73.5=0 \\
t=15 \\
t=0 \text { represents the start time. }
\end{gathered}
$$

It takes 15 seconds for the projectile to return to the ground.

1.5 Example 4(a) Analyzing Sport Utility Vehicle (SUV) Sales

 (cont.)$$
S=.016 x^{2}+.124 x+.787
$$

For 2000, $x=10$.

$$
S=.016(10)^{2}+.124(10)+.787 \approx 3.6 \text { million }
$$

For 2001, $x=11$

$$
S=.016(11)^{2}+.124(11)+.787 \approx 4.1 \text { million }
$$

For 2000, the prediction is equal to the actual figure of 3.6 million.

For 2001, the prediction is greater than the actual figure of 3.7 million.

Reject the negative solution, and round 8.5 down to 8 .

The year 1998 corresponds to $x=8$.

SUV sales reached 3 million in 1998

Based on figures from 1990-2001, the equation

$$
S=.016 x^{2}+.124 x+.787
$$

models sales of SUVs from 1990 to 2001,where S represents sales in millions, and $x=0$ represents 1990, $x=1$ represents 1991, etc.

Use the model to determine sales in 2000 and 2001.
Compare the results to the actual figures of 3.6 million and 3.7 million.

1.5 Example 4(b) Analyzing Sport Utility Vehicle (SUV) Sales (page 126)

According to the model, in what year did sales reach 3 million? (Round down to the nearest year.)

$$
S=.016 x^{2}+.124 x+.787
$$

Let $S=0$, then solve for x.
$3=.016 x^{2}+.124 x+.787 \Rightarrow 0=.016 x^{2}+.124 x-2.213$
$x=\frac{-.124 \pm \sqrt{.124^{2}-4(.016)(-2.213)}}{2(.016)}$ Quadratic formula
$x \approx 8.5$ or $x \approx-16.3$

Copyrigh © 2008 Pearson Addison-Wesley. All rights reserved.

1.6 Example 1(a) Solving Rational Equations that Lead to Linear Equations (page 133)

Solve $\frac{2 x-3}{2}+\frac{5 x}{x+1}=x$.

The least common denominator is $2(x+1)$, which equals 0 when $x=-1$. Therefore, -1 cannot be a solution of the equation.
1.6 Example 1(a) Solving Rational Equations that Lead to Linear Equations (cont.)

$$
\begin{array}{rlrl}
\frac{2 x-3}{2}+\frac{5 x}{x+1} & =x & & \\
2(x+1)\left(\frac{2 x-3}{2}+\frac{5 x}{x+1}\right) & =2(x+1) x & & \begin{array}{l}
\text { Multiply by the LCD, } \\
2(x+1) .
\end{array} \\
(x+1)(2 x-3)+2(5 x) & =2 x^{2}+2 x & & \text { Simplify. } \\
2 x^{2}-3 x+2 x-3+10 x & =2 x^{2}+2 x & & \text { Multiply. } \\
2 x^{2}+9 x-3 & =2 x^{2}+2 x & & \text { Combine terms. } \\
7 x & =3 \Rightarrow x=\frac{3}{7} &
\end{array}
$$

The restriction, $x \neq-1$, does not affect this result.

Now check.

$$
\begin{array}{r}
\frac{2 x-3}{2}+\frac{5 x}{x+1}=x \\
\frac{2\left(\frac{3}{7}\right)-3}{2}+\frac{5\left(\frac{3}{7}\right)}{\left(\frac{3}{7}\right)+1} \stackrel{?}{=}\left(\frac{3}{7}\right) \\
\frac{3}{7}=\frac{3}{7} \\
\text { Solution set: }\left\{\frac{3}{7}\right\}
\end{array}
$$

$$
\begin{array}{rlrl}
\frac{x}{x-5}+5 & =\frac{5}{x-5} & \\
(x-5)\left(\frac{x}{x-5}+5\right) & =(x-5)\left(\frac{5}{x-5}\right) \quad & \begin{array}{l}
\text { Multiply by the LCD, } \\
x-5 . \\
x+5(x-5)
\end{array} & =5
\end{array}
$$

1.6 Example 2(a) Solving Rational Equations that Lead to Quadratic Equations (page 134)

Solve $\frac{x-5}{x-3}+\frac{1}{x}=\frac{-7}{x^{2}-3 x}$.

The least common denominator is $x(x-3)=x^{2}-3 x$, which equals 0 when $x=0$ or $x=3$. Therefore, 0 and 3 cannot be solutions of the equation.

The only possible solution is 5 . However, the variable is restricted to real numbers except 5 .

Solution set: Ø

$$
\begin{aligned}
\frac{x-5}{x-3}+\frac{1}{x} & =\frac{-7}{x^{2}-3 x} & & \\
x(x-3)\left(\frac{x-5}{x-3}+\frac{1}{x}\right) & =x(x-3)\left(\frac{-7}{x^{2}-3 x}\right) & & \begin{array}{l}
\text { Multiply by the } \\
\text { LCD, } x(x-3) .
\end{array} \\
x(x-5)+(x-3) & =-7 & & \text { Distributive } \\
x^{2}-5 x+x-3 & =-7 & & \text { property } \\
x^{2}-4 x+4 & =0 & & \text { Standard form } \\
(x-2)(x-2) & =0 & & \text { Factor. } \\
x-2 & =0 \Rightarrow x=2 & &
\end{aligned}
$$

The restrictions $x \neq 0$ and $x \neq 3$ do not affect the result.
Now check.

$$
\begin{aligned}
\frac{x-5}{x-3}+\frac{1}{x} & =\frac{-7}{x^{2}-3 x} \\
\frac{2-5}{2-3}+\frac{1}{2} & \stackrel{?}{2^{2}-3(2)} \\
\frac{-3}{-1}+\frac{1}{2} & \stackrel{-7}{-2} \\
\frac{7}{2} & =\frac{7}{2}
\end{aligned}
$$

Solution set: $\{2\}$

1.6 Example 2(b) Solving Rational Equations that Lead to Quadratic Equations (page 134)

Solve $\frac{x}{x+5}+\frac{5}{x-5}=\frac{50}{x^{2}-25}$.

The least common denominator is $(x+5)(x-5)=x^{2}-25$, which equals 0 when $x=5$. Therefore, 5 cannot be solutions of the equation.

1.6 Example 3 Solving a Work Rate Problem (page 135)

Lisa and Keith are raking the leaves in their backyard. Working alone, Lisa can rake the leaves in 5 hr , while Keith can rake them in 4 hr . How long would it take them to rake the leaves working together?

Assign variables.

Let $x=$ the amount of time it would take them to rake the leaves together.

In 1 hr , Lisa can do $\frac{1}{5}$ of the job by herself.
In 1 hr , Keith can do $\frac{1}{4}$ of the job by himself.
1.6 Example 2(b) Solving Rational Equations that Lead to Quadratic Equations (cont.)

$$
\begin{aligned}
\frac{x}{x+5}+\frac{5}{x-5} & =\frac{50}{x^{2}-25} \\
(x+5)(x-5)\left(\frac{x}{x+5}+\frac{5}{x-5}\right) & =(x+5)(x-5)\left(\frac{50}{x^{2}-25}\right) \\
x(x-5)+5(x+5) & =50 \\
x^{2}-5 x+5 x+25 & =50 \\
x^{2} & =25 \Rightarrow x= \pm 5
\end{aligned}
$$

The possible solutions are 5 . However, the variable is restricted to real numbers except 5 .

Solution set: \varnothing
Copyight $\otimes 2008$ Pearson Addison-Westey. All rights reserved.

1.6 Example 3 Solving a Work Rate Problem (cont.)

Write an equation.

	r	t	Part of the Job Accomplished
Lisa	$\frac{1}{5}$	x	$\frac{x}{5}$
Keith	$\frac{1}{4}$	x	$\frac{x}{4}$

1.6 Example 3 Solving a Work Rate Problem (cont)

$$
\begin{array}{rlrl}
\frac{x}{5}+\frac{x}{4} & =1 & & \\
20\left(\frac{x}{5}+\frac{x}{4}\right) & =20 \cdot 1 & & \text { Multiply by the LCD, } 20 . \\
4 x+5 x & =20 & & \text { Distributive property } \\
9 x & =20 \Rightarrow x=\frac{20}{9}=2 \frac{2}{9}
\end{array}
$$

It will take Lisa and Keith $2 \frac{2}{9} \mathrm{hr}$ working together to rake the leaves.

1.6 Example 4 Solving an Equation Containing a Radical (Square Root) (cont.)

Now check.

$$
\begin{aligned}
& x-\sqrt{4 x+12}=0 \\
& -2-\sqrt{4(-2)+12}=0 \\
& -2-\sqrt{4} \stackrel{?}{=} 0 \\
& -2-2 \stackrel{?}{=} 0 \\
& -4 \neq 0 \\
& \begin{aligned}
6-\sqrt{4(6)+12} & ? \\
6-\sqrt{36} & \stackrel{?}{=} 0 \\
6-6 & \stackrel{?}{=} 0 \\
0 & =0
\end{aligned}
\end{aligned}
$$

-2 is not a solution.

Solution set: $\{6\}$
Copyight © 2008 Pearson Addison-Wesley. All rights reserved.

1.6 Example 4	Solving an Equation Containing a Radical		
	(Square Root) (page 138)		
Solve $x-\sqrt{4 x+12}$	$=0$.		
$x-\sqrt{4 x+12}$	$=0$		
x	$=\sqrt{4 x+12}$		Isolate the radical.
x^{2}	$=4 x+12$		Square both sides.
$x^{2}-4 x-12$	$=0$		Solve the quadratic
$(x-6)(x+2)$	$=0$		equation.
$x-6=0$ or $x+2$	$=0$		Zero-factor property
$x=6$ or x	$=-2$		Proposed solutions

1.6 Example 5 Solving an Equ	(page 138)
Solve $\sqrt{3 x+1}-\sqrt{x+4}=1$.	
$\sqrt{3 x+1}-\sqrt{x+4}=1$	
$\begin{aligned} \sqrt{3 x+1} & =\sqrt{x+4}+1 & & \text { Isolate one radical. } \\ (\sqrt{3 x+1})^{2} & =(\sqrt{x+4}+1)^{2} & & \text { Square both sides. } \end{aligned}$	
$3 x+1=(\sqrt{x+4})^{2}+2 \sqrt{x+4}+1$	
$3 x+1=x+4+2 \sqrt{x+4}+1$	
$2 x-4=2 \sqrt{x+4}$	Combine terms and isolate the radical.
	1.89

1.6 Example 5 Solving an Equation Containing Two Radicals	
Now check. $\sqrt{3 x+1}-\sqrt{x+4}=1$	
$\sqrt{3(0)+1}-\sqrt{(0)+4} \stackrel{?}{=} 1 \mid \sqrt{3(5)+1}-\sqrt{(5)+4} \stackrel{?}{=} 1$	
$1-2 \stackrel{?}{=} 1$	$4-3 \stackrel{?}{=} 1$
$-1 \neq 1$	$1=1$
0 is not a solution.	
Solution set: $\{5\}$	
	1.91

1.6 Example 6 Solving an Equation Containing a Radical (Cube Root) (cont.)	
$\sqrt[3]{5 x^{2}-12 x+6}-\sqrt[3]{x}=0$	
$\begin{aligned} \sqrt[3]{5\left(\frac{3}{5}\right)^{2}-12\left(\frac{3}{5}\right)+6-\sqrt[3]{\frac{3}{5}}}=\left\{\begin{aligned} \sqrt[3]{\frac{9}{5}-\frac{36}{5}+6}-\sqrt[3]{\frac{3}{6}} & =0 \\ \sqrt[3]{\frac{3}{5}}-\sqrt[3]{\frac{3}{5}} & =0 \\ 0 & =0 \end{aligned}\right. \text { ? } \end{aligned}$	$\begin{array}{r} \sqrt[3]{5(2)^{2}-12(2)+6}-\sqrt[3]{2} \stackrel{?}{=} 0 \\ \sqrt[3]{20-24+6}-\sqrt[3]{2} \stackrel{?}{=} 0 \\ \sqrt[3]{2}-\sqrt[3]{2} \stackrel{?}{=} 0 \\ 0=0 . \end{array}$
	${ }^{1.93}$

1.6 Example 7(a) Solving Equations Quadratic in Form		
		(page 140)
Solve for x by replacing u with $(x-3)^{1 / 4}$,		
$(x-3)^{1 / 4}=4$	$(x-3)^{1 / 4}=2$	Substitute.
$x-3=4^{4}$	$x-3=2^{4}$	Raise both sides to the
$x-3=256$	$x-3=16$	fourtn pow
$\chi=259$	$x=19$	Proposed solutions
	mosmemex.	${ }^{1-95}$

$\left.\begin{array}{|c}\hline 1.6 \text { Example 7(a) Solving Equations Quadratic in Form (cont.) } \\ \text { Now check. } \\ (x-3)^{1 / 2}-6(x-3)^{1 / 4}+8=0 \\ (259-3)^{1 / 2}-6(259-3)^{1 / 4}+8 ? \\ (256)^{1 / 2}-6(256)^{1 / 4}+8=0 \\ 16-6(4)+8=0 \\ 0=0\end{array}\right]$

1.6 Example 7(b) Solving Equations Quadratic in Form	
	(page 140)
Solve $15 x^{-2}-4 x^{-1}=3$.	
$15 x^{-2}-4 x^{-1}-3=0$	Subtract 3.
$\begin{aligned} & \text { Let } u=x^{-1} . \text { Then } u^{2}=x^{-2} . \\ & 15 u^{2}-4 u-3=0 \end{aligned}$	Substitute.
$(5 u-3)(3 u+1)=0$	Factor.
$5 u-3=0$ or $3 u+1=0$	Zero-factor property
$u=\frac{3}{5} \quad \text { or } \quad u=-\frac{1}{3}$	Proposed solutions
	1.97

1.6 Example 7(b) Solving Equations Quadratic in Form (cont)

Solve for x by replacing u with x^{-1}.

$$
x^{-1}=\frac{3}{5} \Rightarrow x=\frac{5}{3} \quad x^{-1}=-\frac{1}{3} \Rightarrow x=-3
$$

Now check.

$$
\begin{array}{r|r}
15\left(\frac{5}{3}\right)^{-2}-4\left(\frac{5}{3}\right)^{-1}-3 & 15(-3)^{-2}-4(-3)^{-1}=3 \\
15\left(\frac{3}{5}\right)^{2}-4\left(\frac{3}{5}\right)^{?}-3 & 15\left(-\frac{1}{3}\right)^{2}-4\left(-\frac{1}{3}\right)^{?}-3 \\
15\left(\frac{9}{25}\right)-\frac{12}{5}-3 & \frac{5}{3}+\frac{4}{3} ? 3 \\
3 & =3 \\
\text { Solution set: }\left\{\frac{5}{3},-3\right\}
\end{array}
$$

1.6 Example 8 Solving Equations Quadratic in Form (page 141)

Solve $18 x^{4}-29 x^{2}+3=0$.
Let $u=x^{2}$. Then $u^{2}=x^{4}$.

$$
\begin{aligned}
18 u^{2}-29 u+3=0 & \text { Substitute. } \\
(2 u-3)(9 u-1)=0 & \text { Factor. } \\
2 u-3=0 \text { or } 9 u-1=0 & \text { Zero-factor property } \\
u=\frac{3}{2} \text { or } u=\frac{1}{9} & \text { Proposed solutions }
\end{aligned}
$$

1.7 Inequalities

Linear Inequalities Three-Part Inequalities Rational Inequalities

1.6 Example 9 Solving an Equation that Leads to One Quadratic in Form (cont.)	
Now check. $\quad x=\left(10 x^{2}-24\right)^{1 / 4}$.$\begin{array}{l\|l} -\sqrt{6}=\left(10(-\sqrt{6})^{2}-24\right)^{14} & \sqrt{6}=\left(10(\sqrt{6})^{2}-24\right)^{1 / 4} \\ -\sqrt{6}=(36)^{1 / 4} & \sqrt{6}=(36)^{14} \\ -\sqrt{6} \neq \sqrt{6} \text { Not a solution } & \sqrt{6}=\sqrt{6} \end{array}$	
$\begin{aligned} & -2^{?}=\left(10(-2)^{2}-24\right)^{14} \\ & -2^{?}=(16)^{14} \\ & -2+2 \quad \text { Not a solution } \end{aligned}$	$\begin{aligned} & 2^{?}=\left(10(2)^{2}-24\right)^{14} \\ & 2^{?}=(16)^{14} \\ & 2=2 \end{aligned}$
Solution set: $\{\sqrt{6}, 2\}$	

1.7 Example 1 Solving a Linear Inequality (page 140)

$$
\begin{array}{rlrl}
-2 x+7 & <-5 & \\
-2 x+7-7 & <-5-7 & \text { Subtract } 7 . \\
-2 x & <-12 & & \\
\frac{-2 x}{-2} & >\frac{-12}{-2} & \begin{array}{l}
\text { Divide by }-2 . \text { Reverse the } \\
\text { symbon of the inequality } \\
\text { symen multilping or } \\
\\
x
\end{array}>6 & \\
\text { dividing by a negative number. }
\end{array}
$$

Solution set: $\{x \mid x>6\}$

Copyrigh © 2008 Pearson Addison-Westey. All rights reserved.

7 Example 3 Solving a Three-Part Inequality (page 148)

$$
\begin{aligned}
1 & \leq 6 x-8 \leq 4 \\
1+8 & \leq 6 x-8+8 \leq 4+8 \quad \text { Add } 8 . \\
9 & \leq 6 x \leq 12 \\
\frac{9}{6} & \leq \frac{6 x}{6} \leq \frac{12}{6} \\
\frac{3}{2} & \leq x \leq 2
\end{aligned}
$$

Write the solution set in interval notation and graph it.

7 Example 5 Solving a Quadratic Inequality (page 149)

Solve $x^{2}-2 x-15 \leq 0$.
Step 1: Find the values of x that satisfy $x^{2}-2 x-15=0$.

$$
\begin{array}{rlrl}
x^{2}-2 x-15 & =0 \\
(x-5)(x+3) & =0 \\
x-5 & =0 & \text { or } x+3 & =0 \\
x & =5 & \text { or } \quad x & =-3
\end{array}
$$

Step 2: The two numbers divide a number line into three regions.

Use closed dots since the inequality symbol includes equality.

Copyright © 2008 Pearson Addison-Wesley. All rights reserved.
1.7 Example 2 Solving a Linear Inequality (page 147)

$$
\begin{aligned}
3-4 x & \geq 2 x+8 \\
3-4 x-8 & \geq 2 x+8-8 \quad \text { Subtract } 8 . \\
-5-4 x & \geq 6 x \\
-5-4 x+4 x & \geq 6 x+4 x \quad \text { Add } 4 x . \\
-5 & \geq 6 x \\
\frac{-5}{6} & \geq \frac{6 x}{6} \\
-\frac{5}{6} & \geq x \Rightarrow x \leq-\frac{5}{6}
\end{aligned}
$$

Write the solution set Solution set: $\left(-\infty,-\frac{5}{6}\right]$ in interval notation and graph it

Copyright © 2008 Pearson Addison-Wesley. All rights reserved.

1.7 Example 4 Solving the Break-Even Point (page 148)

If the revenue and cost of a certain product are given by $R=45 x$ and $C=30 x+5250$, where x is the number of units produced and sold, at what production level does R at least equal C ?

Set $R \geq C$ and solve for x.

$$
\begin{aligned}
45 x & \geq 30 x+5250 \\
15 x & \geq 5250 \quad \text { Subtract } 30 x . \\
x & \geq 350 \quad \text { Divide by } 15 .
\end{aligned}
$$

The break-even point is at $x=350$.
This product will at least break even only if the number of units produced and sold is in the interval $[350, \infty)$.

Copyright © 2008 Pearson Addison-Westey. All rights reserved.
1-107

1.7 Example 5 Solving a Quadratic Inequality (cont.)

Step 3: Choose a test value to see if it satisfies the inequality.

Interval	Test Value	is $x^{2}-2 x-15 \leq 0$ Thue or False?
$A:(-2)$	-5	$\begin{array}{r} (-5)^{2}-2(-5)-15 \leq 0 \\ 20 \leq 0 \end{array}$
B: $[-3,5]$	0	$\begin{array}{r} \sigma^{2}-2(0)-15 \leq 0 \\ -15 \leq 0 \end{array}$ True
C. $[5, m)$	6	$\begin{array}{r} 6^{2}-2(6)-15 \leq 0 \\ 9 \leq 0 \end{array}$

The values in interval B make the inequality true.

$$
\text { Solution set: }[-3,5]
$$

Copyright © 2008 Pearson Addison-Wesley. All rights reserved.
1.7 Example 6 Solving a Quadratic Inequality (page 150)

Solve $3 x^{2}-11 x-4>0$.
Step 1: Find the values of x that satisfy $3 x^{2}-11 x-4=0$.

$$
\begin{aligned}
3 x^{2}-11 x-4 & =0 \\
(3 x+1)(x-4) & =0 \\
3 x+1=0 \quad \text { or } x-4 & =0 \\
x=-\frac{1}{3} \text { or } \quad x & =4
\end{aligned}
$$

Step 2: The two numbers divide a number line into three regions.

1.7 Example 7 Solving a Problem Involving the Height of a Projectile (page 151)

If an object is launched from ground level with an initial velocity of 144 ft per sec, its height in feet t seconds after launching is s feet, where

$$
s=-16 t^{2}+144 t
$$

When will the object be greater than 128 ft above ground level?

$$
\begin{aligned}
-16 t^{2}+144 t & >128 & & \text { Set } s \text { greater than } 128 . \\
-16 t^{2}+144 t-128 & >0 & & \text { Subtract } 128 . \\
t^{2}-9 t+8 & <0 & & \text { Divide by }-16 .
\end{aligned}
$$

1.7 Example 6 Solving a Quadratic Inequality (cont.)

Step 3: Choose a test value to see if it satisfies the inequality.

Interal	$\begin{aligned} & \text { Test } \\ & \text { Vasue } \end{aligned}$	is $3 x^{2}-11 x-4>0$ True or False?
A: $\left(-2-\frac{1}{2}\right)$	-1	$\begin{aligned} 3(-1)^{2}-12(-1)-4 & >0 \\ 10 & >0 \end{aligned}$ Tha
B. $\left(-\frac{1}{3}, 4\right)$	0	$\left.\begin{array}{rl} \left.3(0)^{4}-1 N\right) \\ 0 \end{array}\right)-4 \geqslant 0$
C. $(4,-)$	8	$\begin{aligned} \left.3(5)^{2}-14 / 5\right)-4 & \geqslant 0 \\ 16 & >0 \end{aligned}$ trun

The values in intervals A and C make the inequality true.

$$
\text { Solution set: }\left(-\infty,-\frac{1}{3}\right) \cup(4, \infty)
$$

Copyrght © 2008 Pearson Addison-Westey. Al rights reserved.
1-111

1.7 Example 7 Solving a Problem Involving the Height of a Projectile (cont.)

Step 1: Solve the corresponding equation.

$$
\begin{array}{rll}
t^{2}-9 t+8 & =0 & \\
(t-8)(t-1) & =0 & \\
\text { Factor. } \\
t=8 \text { or } t=1 & & \text { Zero-factor property }
\end{array}
$$

Step 2: The two numbers divide a number line into three regions.

1.7 Example 8 Solving a Rational Inequality (page 151)

Solve $\frac{6}{x-3} \geq 4$.
Step 1:

$$
\begin{aligned}
\frac{6}{x-3}-4 & \geq 0 & & \text { Subtract 4. } \\
\frac{6}{x-3}-\frac{4(x-3)}{x-3} & \geq 0 & & \begin{array}{l}
x-3 \text { is the common } \\
\text { denominator. }
\end{array} \\
\frac{6-4 x+12}{x-3} & \geq 0 & & \begin{array}{l}
\text { Write as a single } \\
\text { fraction. }
\end{array} \\
\frac{18-4 x}{x-3} & \geq 0 & & \begin{array}{l}
\text { Combine terms in the } \\
\text { numerator. }
\end{array}
\end{aligned}
$$

The values in interval B make the inequality true, so the solution set is $(1,8)$.

The object will be greater than 128 ft above ground level between 1 and 8 seconds after it is launched.

1.7 Example 8 Solving a Rational Inequality (cont.)

Step 2: The quotient changes sign only where x-values make the numerator or denominator 0 .

$$
\begin{array}{rlrlr}
18-4 x & =0 & \text { or } & & x-3
\end{array}=0
$$

The values $\frac{9}{2}$ and 3 divide the number line into three regions. Use an open circle on 3 because it makes the denominator equal 0.

Example 9 Solving a Rational Inequality (page 153)

Solve $\frac{3 x+1}{2 x-3}<4$.
Step 1:

$$
\begin{array}{rll}
\frac{3 x+1}{2 x-3}-4<0 & \text { Subtract 4. } \\
\frac{3 x+1}{2 x-3}-\frac{4(2 x-3)}{2 x-3}<0 & \begin{array}{l}
2 x-3 \text { is the common } \\
\text { denominator. }
\end{array} \\
\frac{3 x+1-8 x+12}{2 x-3}<0 & \begin{array}{l}
\text { Write as a single } \\
\text { fraction. }
\end{array} \\
\frac{-5 x+13}{2 x-3}<0 & \begin{array}{l}
\text { Combine terms in the } \\
\text { numerator. }
\end{array}
\end{array}
$$

1.7 Example 8 Solving a Rational Inequality (cont.)

Step 3: Choose a test value to see if it satisfies the inequality.

Interval	Test Value	is $\frac{1}{s-3} \geq 4$ True or False?
A: $(-\infty, 3)$	0	$\frac{6}{0-3} \geq 4$ $-2>4$
B: $:\left(3, \frac{8}{2}\right]$	4	$\frac{3}{4-3} \geq 4$ $6>4$
C: $\left[\frac{8}{8},-\infty\right)$	5	$\frac{6}{3-3} \geq 4$ $3>4$

The values in interval B make the inequality true.

$$
\text { Solution set: }\left[3, \frac{9}{2}\right]
$$

1.7 Example 9 Solving a Rational Inequality (cont.)

Step 2: The quotient changes sign only where x-values make the numerator or denominator 0 .

$$
\begin{aligned}
-5 x+13 & =0 & & \text { or } & 2 x-3 & =0 \\
x & =\frac{13}{5} & & \text { or } & & x
\end{aligned}=\frac{3}{2}
$$

The values $\frac{3}{2}$ and $\frac{13}{5}$ divide the number line into three regions. Use open circles because equality is not included.

1.8 Example 1 (a) Solving Absolute Value Equations (page 159)

$$
\begin{array}{cccc}
& & |9-4 x|=7 \\
9-4 x=7 & \text { or } & 9-4 x=-7 & \text { Property } 1 \\
-4 x=-2 & \text { or } & -4 x=-16 & \text { Subtract } 9 . \\
x=\frac{1}{2} & \text { or } & x=4 & \text { Divide by }-4 .
\end{array}
$$

Now check.

$$
\begin{array}{r|r}
\left|9-4\left(\frac{1}{2}\right)\right|{ }^{2}=7 & |9-4(4)| ? ? \\
|9-2| ?=7 & |9-16|=7 \\
|7|=7 & |-7| \stackrel{?}{=}=7 \\
7=7 & 7=7
\end{array}
$$

Solution set: $\left\{\frac{1}{2}, 4\right\}$

1.8 Example 2(a) Solving Absolute Value	Inequalities (page 160)
$\|4 x-6\|<10$	
$-10<4 x-6<10$	Property 3
$-4<4 x<16$	Add 6.
$-1<x<4$	Divide by 4.
Solution set: (-1, 4)	
	1-124

1.8 Example 1(b) Solving Absolute Value Equations (page 159)

$$
|3 x+2|=|x-5|
$$

$$
3 x+2=x-5 \text { or } 3 x+2=-(x-5) \text { Property } 2
$$

$$
2 x=-7 \quad \text { or } \quad 3 x+2=-x+5
$$

$$
x=-\frac{7}{2} \quad \text { or } \quad 4 x=3 \Rightarrow x=\frac{3}{4}
$$

Now check.

$$
\begin{gathered}
\left\lvert\, \begin{array}{c|c}
\left.\left\lvert\, 3\left(-\frac{7}{2}\right)+2\right.\right)^{?}\left|-\frac{7}{2}-5\right| & \left|3\left(\frac{3}{4}\right)+2\right|=\left|\frac{3}{4}-5\right| \\
\left|-\frac{17}{2}\right|=\left|-\frac{17}{2}\right| & \left|\frac{17}{4}\right|^{?}\left|-\frac{17}{4}\right| \\
\frac{17}{2}=\frac{17}{2} & \frac{17}{4}=\frac{17}{4} \\
\text { Solution set: }\left\{-\frac{7}{2}, \frac{3}{4}\right\}
\end{array}\right. \text {. }
\end{gathered}
$$

Copyrigh © 2008 Pearson Addison-Wesiey. All rights reserved.
1-123

1.8 Example 4(a) Solving Special Cases of Absolute Value Equations and Inequalities (page 161)
$\|7 x+28\|=0$
The absolute value of a number will be 0 if that number is 0 .
Therefore, $\|7 x+28\|=0$ is equivalent to $7 x+28=0$.
Solution set: $\{-4\}$

1.8 Example 4(b) Solving Special Cases of Absolute Value Equations and Inequalities (page 161)

$$
|6 x-9|>-2
$$

The absolute value of a number is always nonnegative.

Therefore, $|6 x-9|>-2$ is always true.

$$
\text { Solution set: }(-\infty, \infty)
$$

1.8 Example 5 Using Absolute Value Inequalities to Describe Distances (page 162)

Write each statement using an absolute value inequality.
(a) m is no more than 9 units from 3.

This means that m is 9 units or less from 3 . Thus the distance between m and 3 is less than or equal to 9 , or $|m-3| \leq 9$.
(b) t is within .02 unit of 5.8 .

This means that t is less than . 02 unit from 5.8. Thus the distance between t and 5.8 is less than .02, or $|t-5.8|<.02$.

Copyrigh © 2008 Pearson Addison-Wesley. All rights reserved.
1.8 Example 4(c) Solving Special Cases of Absolute Value Equations and Inequalities (page 161)

$$
|2-5 x| \leq-5
$$

There is no number whose absolute value is less than -5 .

Therefore, $|2-5 x| \leq-5$ is always false.

Solution set: Ø

Copyright © 2008 Pearson Addison-Westey. All rights reserved.	$1-129$

1.8 Example 6 Using Absolute Value to Model Tolerance (page 162)

Suppose $y=5 x-2$ and we want y to be within .001 unit of 6 . For what values of x will this be true?

$$
\begin{aligned}
&|y-6|<.001 \\
& \left\lvert\, \begin{array}{l}
\text { Write an absolute } \\
\text { value inequality }
\end{array}\right. \\
&\mid 5 x-2)-6 \mid<.001 \\
& \text { Substitute } 5 x-2 \text { for } y . \\
&-.001<5 x-8 \mid<.001 \\
& 7.999<5 x<8.001 \text { Property } 3 \\
& 1.5998<x<1.6002 \text { Ddivide by } 5 .
\end{aligned}
$$

Values of x in the interval $(1.5998,1.6002)$ will satisfy the condition.
Copyright © 2008 Pearson Addison-Westey. All rights reserved

