

2.5 Example 2 Using the Point-Slope Form (Given Two Points) (page 233)

Find an equation of the line through $(-4,3)$ and $(5,-1)$.
First, find the slope: $m=\frac{3-(-1)}{-4-5}=-\frac{4}{9}$
Use either point for $\left(x_{1}, y_{1}\right)$

$$
\begin{array}{rlr}
y-y_{1} & =m\left(x-x_{1}\right) & \text { Point-slope form } \\
y-3 & =-\frac{4}{9}[x-(-4)] \quad\left(x_{1}, y_{1}\right)-(-4.3) \\
9(y-3) & =-4(x+4) & \\
9 y-27 & =-4 x-16 & \\
9 y & =-4 x+11 & \\
y & =-\frac{4}{9} x+\frac{11}{9} &
\end{array}
$$

[^0]
2.5 Example 2 Using the Point-Slope Form (Given Two Points) (cont.)

The screen supports the result.

Find an equation of the line through $(-2,4)$ and $(2,2)$. Then graph the line using the slopeintercept form.
First, find the slope: $m=\frac{4-2}{-2-2}=-\frac{1}{2}$
Substitute $-\frac{1}{2}$ for m and the coordinates of one of the points (say, (2, 2)) for x and y into the slope-intercept form $y=m x+b$, then solve for b :

$$
2=-\frac{1}{2} \cdot 2+b \Rightarrow 3=b
$$

The equation is $y=-\frac{1}{2} x+3$

2.5 Example 5 Finding an Equation From a Graph (page 235)

Use the graph to (a) find the slope, y-intercept, and x-intercept, and (b) write the equation of the function.

The line rises 5 units each time the x-value increases by 2 units.

$$
\text { The slope is } \frac{5}{2} \text {. }
$$

2.5 Example 3 Find the Slope and y-intercept From an Equation of a Line (page 234)

Find the slope and y-intercept of the line with equation $3 x-4 y=12$.

Write the equation in slope-intercept form:

$$
\begin{aligned}
3 x-4 y & =12 \\
-4 y & =-3 x+12 \\
y & =\frac{3}{4} x-3
\end{aligned}
$$

The slope is $\frac{3}{4}$ and the y-intercept is -3 .

| 2.5 Example 4 Using the Slope-Intercept Form (Given Two |
| :---: | :---: | :---: |
| Points (cont.) |

2.5 Example 5(a) Finding an Equation From a Graph (cont.)

The graph intersects the y-axis at $(5,0)$ and the x-axis at $(-2,0)$.

The y-intercept is 5 .
The x-intercept is -2 .

Copyright © 2008 Pearson Addison-Wesley. All rights resesved.
2-96
2.5 Example 5(b) Finding an Equation From a Graph (cont.)

Slope $\frac{5}{2}, y$-intercept 5

$$
f(x)=\frac{5}{2} x+5
$$

2.5 Example 6(a) Finding Equations of Parallel and Perpendicular Lines (page 236)

Find the equation in slope-intercept form of the line that passes through the point $(2,-4)$ that is parallel to the line $3 x-2 y=5$.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \quad \text { Point-slope form } \\
y-(-4) & =\frac{3}{2}(x-2) \\
y+4 & =\frac{3}{2} x-3 \\
y & =\frac{3}{2} x-7
\end{aligned}
$$

2.5 Example 6(b) Finding Equations of Parallel and Perpendicular Lines (page 236)

Find the equation in slope-intercept form of the line that passes through the point $(2,-4)$ that is perpendicular to the line $3 x-2 y=5$.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \quad \text { Point-slope form } \\
y-(-4) & =-\frac{2}{3}(x-2) \\
y+4 & =-\frac{2}{3} x+\frac{4}{3} \\
y & =-\frac{2}{3} x-\frac{8}{3}
\end{aligned}
$$

2.5 Example 6(a) Finding Equations of Parallel and Perpendicular Lines (page 236)

Find the equation in slope-intercept form of the line that passes through the point $(2,-4)$ that is parallel to the line $3 x-2 y=5$.

Write the equation in slope-intercept form to find the slope:

$$
3 x-2 y=5 \Rightarrow-2 y=-3 x+5 \Rightarrow y=\frac{3}{2} x+\frac{5}{2}
$$

The slope is $\frac{3}{2}$.
Parallel lines have the same slope, so the slope of the line whose equation is to be found is $\frac{3}{2}$.

2.5 Example 6(b) Finding Equations of Parallel and Perpendicular Lines (page 236)

Find the equation in slope-intercept form of the line that passes through the point $(2,-4)$ that is perpendicular to the line $3 x-2 y=5$.

Write the equation in slope-intercept form to find the slope:

$$
\begin{gathered}
3 x-2 y=5 \Rightarrow-2 y=-3 x+5 \Rightarrow y=\frac{3}{2} x+\frac{5}{2} \\
\text { The slope is } \frac{3}{2} .
\end{gathered}
$$

The slopes of perpendicular lines are negative reciprocals, so the slope of the line whose equation is to be found is $-\frac{2}{3}$

Copyight 2_{2008} Pearson Addison-Wesley. All rights reserved.

2.5 Example 7(a) Finding an Equation of a Line That Models Data (page 238)

Find an equation that models the data. Use the data for 1998 and 2004.

1998 is represented by $x=2$ and 2004 is represented by $x=8$.

Find the slope:
$m=\frac{5148-3486}{8-2}=\frac{1662}{6}=277$

Year	Chst (la dollars)
1006	3151
1906	3486
2000	3774
21002	461
2004	3148
2006	3836

Sompe:US. Naional Cenar for Elacalow Statistiast Colloge Boant

2.5 Example 7(b) Finding an Equation of a Line That Models Data (page 238)

Use the equation from part (a) to predict the cost of tuition and fees in 2008.

For 2008, $x=12$

$$
\begin{aligned}
& y=277 x+2932 \\
& y=277(12)+2932=6256
\end{aligned}
$$

According to the model, average tuition and fees will be $\$ 6256$ in 2008.

2.5 Example 8(b) Finding an Equation of a Line That Models Data (page 239)

Use the equation to estimate the percent for 2005. How does the result compare to the actual figure of 59.3\%?

Let $x=2005$. Solve for y :

$$
\begin{aligned}
& y=.6533 x-1244.5 \\
& y=.6533(2005)-1244.5 \approx 65.4
\end{aligned}
$$

The model estimates about 65.4\% in 2005

This is 6.1% more than the actual figure of 59.3%.
2.5 Example 9 Solving an Equation with a Graphing Calculator (page 241)
Use a graphing calculator to solve

$$
-3 x+2(5-x)=2 x+28
$$

Write the equation as an equivalent equation with 0 on one side:

$$
-3 x+2(5-x)=2 x+38 \Rightarrow-3 x+2(5-x)-2 x-38=0
$$

Graph $Y=-3 x+2(5-x)-2 x-38$, then find the x-intercept.

The solution set is $\{-4\}$.

Describe the intervals of continuity for each function.

$(-\infty, 0)$ and $(0, \infty)$

$(-\infty, \infty)$
2.6 Example 2(a) Graphing Piecewise-Defined Functions (cont.)

$$
\text { Graph } f(x)= \begin{cases}2 x+4 & \text { if } x<1 \\ 4-x & \text { if } x \geq 1\end{cases}
$$

If $x \geq 1, f(x)=4-x$ has an endpoint at $(1,3)$, which is included as part of the graph.

Find another point, say $(4,0)$, and draw the ray starting at $(1,3)$ which extends through $(4,0)$.

$$
f(x)= \begin{cases}2 x+4 & \text { if } x<1 \\ 4-x & \text { if } x \geq 1\end{cases}
$$

2.6 Graphs of Basic Functions

Continuity The Identity, Squaring, and Cubing Functions The Square Root and Cube Root Functions The Absolute Value Function Piecewise-Defined Functions The Relation $x=y^{2}$

$$
\text { Graph } f(x)=\left\{\begin{array}{cc}
-x-2 & \text { if } x \leq 0 \\
\frac{1}{2} x-2 & \text { if } x>0
\end{array}\right.
$$

Graph each interval of the domain separately.
If $x \leq 0$, the graph of $f(x)=-x-2$ has an endpoint at ($0,-2$), which is included as part of the graph.

To find another point on this part of the graph, choose $x=-2$, so $y=0$. Draw the ray starting at $(0,-2)$ and extending through $(-2,0)$.

copyright $\oplus 2008$ Pearson Addison-Westey. All rights reserved.
$f(x)=-x-2$ if $x \leq 0$

Graphing calculator solution

\qquad

2.6 Example 2(b) Graphing Piecewise-Defined Functions

$$
\text { Graph } f(x)= \begin{cases}-x-2 & \text { if } x \leq 0 \\ \frac{1}{2} x-2 & \text { if } x>0\end{cases}
$$

If $x>0$, the graph of $f(x)=\frac{1}{2} x-2$ has an endpoint at $(0,-2)$, which is not included as part of the graph.

Find another point, say (4, 0), and
draw the ray starting at $(0,-2)$
which extends through $(4,0)$.
Note that the two endpoints coincide, so $(0,-2)$ is included as part of the graph.

Copyright © 2008 Pearson Addison-Wesily. All rights reserved.

$$
f(x)=\left\{\begin{array}{r}
-8-2 \text { if } x \leq 0 \\
\frac{1}{2} x-2 \text { if } x>0
\end{array}\right.
$$

2-116

2.7 Example 1(a) Stretching or Shrinking a Graph (page 259)

Graph the function $\quad g(x)=2 x^{2}$.
Create a table of values.

x	$f(x)=x^{2}$	$g(x)=2 x^{2}$
-2	4	8
-1	1	2
0	0	0
1	1	2
2	4	8

Note that for corresponding values of x, the y-values of $g(x)$ are each twice that of $f(x)$.
Copyright © 2008 Pearson Addison-Westey. All rights reserved.

2.7 Example 1(c) Stretching or Shrinking a Graph (page 259)

Graph the function $\quad k(x)=\frac{1}{4} x^{2}$.
Create a table of values.

x	$f(x)=x^{2}$	$k(x)=\frac{1}{4} x^{2}$
-2	4	1
-1	1	$1 / 4$
0	0	0
1	1	$1 / 4$
2	4	1

Note that for corresponding values of x, the y-values of $g(x)$ are each one-fourth that of $f(x)$.
2.7 Example 1(b) Stretching or Shrinking a Graph (page 259)

Graph the function $\quad h(x)=\frac{1}{2} x^{2}$.
Create a table of values.

x	$f(x)=x^{2}$	$h(x)=\frac{1}{2} x^{2}$
-2	4	2
-1	1	$1 / 2$
0	0	0
1	1	$1 / 2$
2	4	2

Note that for corresponding values of x, the y-values of $g(x)$ are each half that of $f(x)$.
Copyright $\begin{gathered} \\ 2008 \\ \text { Pearson Addison-Wesley. All rights reserved. }\end{gathered}$

Example 2(a) Reflecting a Graph Across an Axis (page 261)

Graph the function $\quad g(x)=--|x|$
Create a table of values.

x	$f(x)-\|x\| g(x)--\|x\|$	
-2	2	-2
-1	1	-1
0	0	0
1	1	-1
2	2	-2

Note that every y-value of $g(x)$ is the negative of the corresponding y-value of $f(x)$. The graph of $f(x)$ is reflected across the x-axis to give the graph of $g(x)$.

Copyright © 2008 Pearson Addison-Wesley. All rights reserved.
2.7 Example 3(a) Testing for Symmetry with Respect to an Axis (page 262)
Test $x=|y|$ for symmetry with respect to the x-axis and the y-axis.

$$
\text { Replace } x \text { with }-x: \quad-x=|y|
$$

The result is not the same as the original equation.
The graph is not symmetric with respect to the y-axis.
Replace y with $-y: x=|-y| \Rightarrow x=|y|$
The result is the same as the original equation.
The graph is symmetric with respect to the x-axis.
The graph is symmetric with respect to the x-axis only.
Copyrigh © 2008 Pearson Addison-Westey. All rights reserved.

2.7 Example 3(a) Testing for Symmetry with Respect to

 an Axis (cont.)Test $x=|y|$ for symmetry with respect to the x-axis and the y-axis.

2.7 Example 3(b) Testing for Symmetry with Respect to an Axis (cont.)

Test $y=|x|-3$ for symmetry with respect to the x-axis and the y-axis.

2.7 Example 3(c) Testing for Symmetry with Respect to an Axis (cont.)
Test $2 x-y=6$ for symmetry with respect to the x-axis and the y-axis.

2.7 Example 3(b) Testing for Symmetry with Respect to an Axis (page 262)
Test $y=|x|-3$ for symmetry with respect to the x-axis and the y-axis.

Replace x with $-x: y=|-x|-3 \Rightarrow y=|x|-3$
The result is the same as the original equation.
The graph is symmetric with respect to the y-axis.
Replace y with $-y:-y=|x|-3$
The result is the not same as the original equation.
The graph is not symmetric with respect to the x-axis.
The graph is symmetric with respect to the y-axis only.
\qquad
2.7 Example 3(c) Testing for Symmetry with Respect to an Axis (page 262)
Test $2 x-y=6$ for symmetry with respect to the x-axis and the y-axis.

Replace x with $-x$: $2(-x)-y=6 \Rightarrow-2 x-y=6$
The result is not the same as the original equation.
The graph is not symmetric with respect to the y-axis.
Replace y with $-y: 2 x-(-y)=6 \Rightarrow 2 x+y=6$
The result is the not same as the original equation.
The graph is not symmetric with respect to the x-axis.
The graph is not symmetric with respect to either axis.
\qquad
2.7 Example 3(d) Testing for Symmetry with Respect to an Axis (page 262)
Test $x^{2}+y^{2}=25$ for symmetry with respect to the x-axis and the y-axis.

Replace x with $-x:(-x)^{2}+y^{2}=25 \Rightarrow x^{2}+y^{2}=25$
The result is the same as the original equation.
The graph is symmetric with respect to the y-axis.
Replace y with $-y$: $x^{2}+(-y)^{2}=25 \Rightarrow x^{2}+y^{2}=25$
The result is same as the original equation.
The graph is symmetric with respect to the x-axis.
The graph is symmetric with respect to both axes.
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.
2.7 Example 3(d) Testing for Symmetry with Respect to an Axis (cont.)
Test $x^{2}+y^{2}=25$ for symmetry with respect to the x-axis and the y-axis.

2.7 Example 4(b) Testing for Symmetry with Respect to

 the Origin (page 264)Is the graph of $y=-2 x^{2}$ symmetric with respect to the origin?

Replace x with $-x$ and y with $-y$: $-y=-2(-x)^{2} \Rightarrow-y=-2 x^{2} \Rightarrow$ $y=2 x^{2}$

The result is not the same as the original equation.

The graph is not symmetric with respect to the origin.

Copyrigh © 2008 Pearson Addison-Wesley. All rights reserved.
2.7 Example 4(a) Testing for Symmetry with Respect to the Origin (page 264)
Is the graph of $y=-2 x^{3}$ symmetric with respect to the origin?

Replace x with $-x$ and y with $-y$:
$-y=-2(-x)^{3} \Rightarrow-y=2 x^{3} \Rightarrow y=-2 x^{3}$
The result is the same as the original equation.

The graph is symmetric with respect to the origin.

Copyright © 2008 Pearson Addison-Westiey. All rights reserved.

2.7 Example 5(a) Determining Whether Functions are Even, Odd, or Neither (page 265)

Is the function even, odd, or neither?

$$
g(x)=x^{5}+2 x^{3}-3 x
$$

Replace x with $-x$:

$$
\begin{aligned}
g(-x) & =(-x)^{5}+2(-x)^{3}-3(-x) \\
& =-x^{5}-2 x^{3}+3 x \\
& =-\left(x^{5}+2 x^{3}-3 x\right) \\
& =-g(x)
\end{aligned}
$$

$g(x)$ is an odd function.

2.7 Example 5(c) Determining Whether Functions are Even, Odd, or Neither (page 265)

Is the function even, odd, or neither?

$$
k(x)=x^{2}+6 x+9
$$

Replace x with $-x$:

$$
\begin{gathered}
k(-x)=(-x)^{2}+6(-x)+9 \\
=x^{2}-6 x+9 \\
k(-x) \neq k(x) \text { and } k(-x) \neq-k(x)
\end{gathered}
$$

$k(x)$ is neither even nor odd.
2.7 Example 6 Translating a Graph Vertically (page 261)

Graph $f(x)=x^{2}+2$.
Compare a table of values for $g(x)=x^{2}$ with $f(x)=x^{2}+2$.

x	$g(x)=x^{2}$	$f(x)=x^{2}+2$
-2	4	6
-1	1	3
0	0	2
1	1	3
2	4	6

The graph of $f(x)$ is the same as the graph of $g(x)$ translated 2 units up.
Copyight 02008 Peasson Addison.Westey. All ights reseeved.

2.7 Example 7 Translating a Graph Horizontally (cont)

Graph $f(x)=(x+2)^{2}$.
The graph of $f(x)$ is the same as the graph of $g(x)$ translated 2 units left.

Copyright © 2008 Pearson Addison-Westey. All rights reserved.

Graph $f(x)=-2|x+3|$.
This is the graph of $g(x)=|x|$ translated three units to the left, reflected across the x-axis, and then stretched vertically by a factor of 2 .

2.7 Example 7 Translating a Graph Horizontally (page 266)

Graph $f(x)=(x+2)^{2}$.
Compare a table of values for $g(x)=x^{2}$ with $f(x)=(x+2)^{2}$.

x	$g(x)=x^{2}$	$f(x)=(x+2)^{2}$
-4	16	4
-3	9	1
-2	4	0
-1	1	1
0	0	4
1	1	9

Using More Than One Transformation on Graphs (page 268)	
Graph $f(x)=-(x-1)^{2}+4$.	
This is the graph of $g(x)=x^{2}$ translated one unit to the right, reflected across the x-axis, and then translated four units up.	$f(x)=-(t-1)^{2}+\frac{4}{2-14}$
Copright 2 2008 Peasion Adision. Westey. All	2-142

2.7 Example 8(c) Using More Graphs (page	One Transformation on
Graph $h(x)=\frac{1}{2} \sqrt{x+2}-3$	
This is the graph of $g(x)=\sqrt{x}$ translated two units to the left, shrunk vertically by a factor of 2 , then translated 3 units down.	 $f(x)=\frac{1}{2} \sqrt{x+2}-3$
	2.144

2.8 Example 1 Using Operations on Functions (cont.)

Let $f(x)=3 x-4$ and $g(x)=2 x^{2}-1$. Find:
(c) $(f g)(-2)$
$f(-2)=3(-2)-4=-10$ and
$g(-2)=2(-2)^{2}-1=7$, so
$(f g)(-2)=(-10)(7)=-70$.
(d) $\left(\frac{f}{g}\right)(3)$
$f(3)=3(3)-4=5$ and $g(3)=2(3)^{2}-1=17$, so
$\left(\frac{f}{g}\right)(3)=\frac{5}{17}$.

2.8 Example 2(a) Using Operations on Functions (page 276)

Let $f(x)=x^{2}-3 x$ and $g(x)=4 x+5$. Find $(f+g)(x)$ and give the domain.

$$
(f+g)(x)=\left(x^{2}-3 x\right)+(4 x+5)=x^{2}+x+5
$$

The domain of $f+g$ is the intersection of the domains of f and g.

Domain of $f:(-\infty, \infty) \quad$ Domain of $g:(-\infty, \infty)$
The domain of $f+g$ is $(-\infty, \infty)$

2.8 Example 2(c) Using Operations on Functions (page 276)

Let $f(x)=x^{2}-3 x$ and $g(x)=4 x+5$. Find $(f g)(x)$ and give the domain.

$$
\begin{aligned}
(f g)(x)=\left(x^{2}-3 x\right)(4 x+5) & =4 x^{3}+5 x^{2}-12 x^{2}-15 x \\
& =4 x^{3}-7 x^{2}-15 x
\end{aligned}
$$

The domain of $f g$ is the intersection of the domains of f and g.

Domain of $f:(-\infty, \infty) \quad$ Domain of $g:(-\infty, \infty)$
The domain of $f g$ is $(-\infty, \infty)$
Copyrigh © 2008 Pearson Addison-Wesley. All rights reserved.

2.8 Example 3(a) Evaluating Combinations of Functions

 (page 277)Use the representations of the functions f and g to evaluate $(f+g)(1),(f-g)(0),(f g)(-1)$, and $\left(\frac{f}{g}\right)(-2)$,

$f(1)=3$ and $g(1)=1$, so
$(f+g)(1)=3+1=4$
$f(0)=4$ and $g(0)=0$, so
$(f-g)(1)=4-0=4$

2.8 Example 2(b) Using Operations on Functions (page 276

Let $f(x)=x^{2}-3 x$ and $g(x)=4 x+5$. Find $(f-g)(x)$ and give the domain.

$$
(f-g)(x)=\left(x^{2}-3 x\right)-(4 x+5)=x^{2}-7 x-5
$$

The domain of $f-g$ is the intersection of the domains of f and g.

Domain of $f:(-\infty, \infty) \quad$ Domain of $g:(-\infty, \infty)$
The domain of $f-g$ is $(-\infty, \infty)$

2.8 Example 2(d) Using Operations on Functions (page 276)

Let $f(x)=x^{2}-3 x$ and $g(x)=4 x+5$. Find $\left(\frac{f}{g}\right)(x)$ and give the domain.

$$
\left(\frac{f}{g}\right)(x)=\frac{x^{2}-3 x}{4 x+5}
$$

The domain of $\frac{f}{g}$ is the intersection of the domains of f and g such that $g(x) \neq 0$.
Domain of $f:(-\infty, \infty) \quad$ Domain of $g:(-\infty, \infty)$
$g(x)=0 \Rightarrow 4 x+5=0 \Rightarrow x=-\frac{5}{4}$
The domain of $\frac{f}{g}$ is $\left(-\infty,-\frac{5}{4}\right) \cup\left(-\frac{5}{4}, \infty\right)$
Copyrigh © 2008 Pearson Addison.Westey. All rights reserved.

2.8 Example 3(a) Evaluating Combinations of Functions

Use the representations of the functions f and g to evaluate $(f+g)(1),(f-g)(0),(f g)(-1)$, and $\left(\frac{f}{g}\right)(-2)$.

$f(-1)=3$ and $g(-1)=1$, so

$$
(f g)(-1)=(3)(1)=3
$$

$f(-2)=0$ and $g(-2)=2$, so

$$
\left(\frac{f}{g}\right)(-2)=\frac{0}{2}=0
$$

Use the representations of the functions f and g to evaluate $(f+g)(1),(f-g)(0),(f g)(-1)$, and $\left(\frac{f}{g}\right)(-2)$.

\boldsymbol{x}	$f(\mathbf{x})$	$\boldsymbol{g}(\mathbf{x})$
-2	-5	0
-1	-3	2
0	-1	4
1	1	6

$f(1)=1$ and $g(1)=6$, so $(f+g)(1)=1+6=7$
$f(0)=-1$ and $g(0)=4$, so $(f-g)(1)=-1-4=-5$

2.8 Example 3(c) Evaluating Combinations of Functions

 (page 277)Use the representations of the functions f and g to evaluate $(f+g)(1),(f-g)(0),(f g)(-1)$, and $\left(\frac{f}{g}\right)(-2)$.

$$
f(x)=3 x+4, g(x)=-|x|
$$

$f(1)=3(1)+4=7$ and $g(1)=-|1|=-1$, so
$(f+g)(1)=7-1=6$
$f(0)=3(0)+4=4$ and $g(0)=-|0|=0$, so $(f-g)(0)=4-0=4$

2.8 Example 3(c) Evaluating Combinations of Functions	
(page 277)	
Use the representation evaluate $(f+g)(1)$, $(f-$ $f(x)=3 x$	g to (-2)
$\begin{aligned} & f(-1)=3(-1)+4=1 \text { an } \\ & (f g)(1)=(1)(-1)=-1 \end{aligned}$	
$\begin{aligned} & f(-2)=3(-2)+4=-2 a \\ & \left(\frac{f}{g}\right)(-2)=\frac{-2}{-2}=1 \end{aligned}$	
	2.160

2.8 Example 4 Find the Difference Quotient (cont.)

Let $f(x)=3 x^{2}-2 x+4$. Find the difference quotient and simplify the expression.

Step 2 Find $f(x+h)-f(x)$

$$
\begin{aligned}
f(x & +h)-f(x) \\
& =\left(3 x^{2}+6 x h+3 h^{2}-2 x-2 h+4\right)-\left(3 x^{2}-2 x+4\right) \\
& =3 x^{2}+6 x h+3 h^{2}-2 x-2 h+4-3 x^{2}+2 x-4 \\
& =6 x h+3 h^{2}-2 h
\end{aligned}
$$

2.8 Example 4 Find the Difference Quotient (cont.)

Let $f(x)=3 x^{2}-2 x+4$. Find the difference quotient and simplify the expression.
Step 3 Find the difference quotient, $\frac{f(x+h)-f(x)}{h}$

$$
\frac{f(x+h)-f(x)}{h}=\frac{6 x h+3 h^{2}-2 h}{h}=6 x+3 h-2
$$

2.8 Example 5(b) Evaluating Composite Functions (page 279)

Let $f(x)=\sqrt{x+4}$ and $g(x)=\frac{2}{x}$. Find $(g \circ f)(5)$.
First find $f(5): f(5)=\sqrt{5+4}=\sqrt{9}=3$

Now find $(g \circ f)(5)$:

$$
(g \circ f)(5)=g(f(5))=g(3)=\frac{2}{3}
$$

Let $f(x)=\sqrt{x-1}$ and $g(x)=2 x+5$. Find $(g \circ f)(x)$ and determine its domain.

$$
(g \circ f)(x)=g(f(x))=2 \sqrt{x-1}+5
$$

Domain of $f:[1, \infty) \quad$ Range of $f:[0, \infty)$
Domain of g : $(-\infty, \infty)$
Therefore, the domain of $(f \circ g)(x)$ is portion of the domain of g that intersects with the domain of f.

Domain of $(g \circ f)(x):[1, \infty)$
Cooyrigh © 2008 Pearson Addison-Wesley. All rights reserved.

2.8 Example 5(a) Evaluating Composite Functions (page 279)

Let $f(x)=\sqrt{x+4}$ and $g(x)=\frac{2}{x}$. Find $(f \circ g)(2)$.
First find $g(2): g(2)=\frac{2}{2}=1$
Now find $(f \circ g)(2)$:

$$
\begin{aligned}
(f \circ g)(2) & =f(g(2))=f(1) \\
& =\sqrt{1+4}=\sqrt{5}
\end{aligned}
$$

2.8 Example 6(a) Determining Composite Functions and Their Domains (page 280)

Let $f(x)=\sqrt{x-1}$ and $g(x)=2 x+5$. Find $(f \circ g)(x)$ and determine its domain.

$$
(f \circ g)(x)=f(g(x))=\sqrt{(2 x+5)-1}=\sqrt{2 x+4}
$$

Domain and range of $g:(-\infty, \infty)$
Domain of $f:[1, \infty)$
Therefore, $g(x)$ must be greater than 1:

$$
2 x+5 \geq 1 \Rightarrow x \geq-2
$$

Domain of $(f \circ g)(x):[-2, \infty)$
Copyight © 2008 Pearson Addison-Westey. All rights reserved.

2.8 Example 7(a) Determining Composite Functions and Their Domains (page 280)

Let $f(x)=\frac{5}{x+4}$ and $g(x)=\frac{2}{x}$. Find $(f \circ g)(x)$ and determine its domain.

$$
(f \circ g)(x)=f(g(x))=\frac{5}{(2 / x)+4}=\frac{5 x}{2+4 x}
$$

Domain and range of $g:(-\infty, 0) \cup(0, \infty)$
Domain of $f:(-\infty,-4) \cup(-4, \infty)$
Therefore, $g(x) \neq-4: \frac{2}{x} \neq-4 \Rightarrow x \neq-\frac{1}{2}$
Domain of $(f \circ g)(x):\left(-\infty,-\frac{1}{2}\right) \cup\left(-\frac{1}{2}, 0\right) \cup(0, \infty)$
2.8 Example 7(b) Determining Composite Functions and

Let $f(x)=\frac{5}{x+4}$ and $g(x)=\frac{2}{x}$. Find $(g \circ f)(x)$
and determine its domain.

$$
(g \circ f)(x)=g(f(x))=\frac{2}{5(x+4)}=\frac{2 x+8}{5}
$$

Domain of $f:(-\infty,-4) \cup(-4, \infty)$
Range of $f:(-\infty, 0) \cup(0, \infty)$
Domain of $g:(-\infty, 0) \cup(0, \infty)$
Since 0 is not in the range of f, the domain of $(g \circ f)(x)$ is $(-\infty,-4) \cup(-4, \infty)$

2.8 Example 9 Finding Functions That Form a Given Composite (page 282)

Find functions f and g such that
$(f \circ g)(x)=4(3 x+2)^{2}-5(3 x+2)-8$.
Note the repeated quantity $3 x+2$.
Choose $g(x)=3 x+2$ and $f(x)=4 x^{2}-5 x-8$.
Then $(f \circ g)(x)=4(3 x+2)^{2}-5(3 x+2)-8$.

There are other pairs of functions f and g that also work. For instance, let $f(x)=4(x+2)^{2}-5(x+2)-8$ and $g(x)=3 x$.

2.8 Example 8 Showing that $(g \circ f)(x) \neq(f \circ g)(x)($ page 281$)$

Let $f(x)=2 x-5$ and $g(x)=3 x^{2}+x$. Show that $(g \circ f)(x) \neq(f \circ g)(x)$ in general.
$(g \circ f)(x)=g(2 x-5)=3(2 x-5)^{2}+(2 x-5)$ $=3\left(4 x^{2}-20 x+25\right)+2 x-5$

$$
=12 x^{2}-58 x+70
$$

$(f \circ g)(x)=f\left(3 x^{2}+x\right)=2\left(3 x^{2}+x\right)-5$

$$
=6 x^{2}+2 x-5
$$

In general, $12 x^{2}-58 x+70 \neq 6 x^{2}+2 x-5$
So, $(g \circ f)(x) \neq(f \circ g)(x)$

Copyrigh © 2008 Pearson Addison-Westiey. All rights reserved.

[^0]: 2.5 Example 2 Using the Point-Slope Form (Given Two Points) (page 233)

 Find an equation of the line through $(-4,3)$ and $(5,-1)$.

 Verify using $(5,-1)$ for $\left(x_{1}, y_{1}\right)$:

 $$
 \begin{aligned}
 y-y_{1} & =m\left(x-x_{1}\right) \quad \text { Point-slope form } \\
 y-(-1) & =-\frac{4}{9}[x-5] \\
 9(y+1) & =-4(x-5) \\
 9 y+9 & =-4 x+20 \\
 9 y & =-4 x+11 \\
 y & =-\frac{4}{9} x+\frac{11}{9}
 \end{aligned}
 $$

