

2.5 Example 2 Using the Point-Slope Form (Given Tw Points) (page 233)	0
Find an equation of the line through (–4, 3) and (5, –1).	
First, find the slope: $m = \frac{3 - (-1)}{-4 - 5} = -\frac{4}{9}$	
Use either point for (x_1, y_1)	
$y - y_1 = m(x - x_1)$ Point-slope for	rm
$y - 3 = -\frac{4}{9}[x - (-4)] (x_1, y_1) - (-4, 3)$	
9(y-3) = -4(x+4)	
9y - 27 = -4x - 16	
9y = -4x + 11	
$y = -\frac{4}{9}x + \frac{11}{9}$	
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.	2-89

2.5 Example 2 Using the Point-Slope Form (Given Two Points) (page 233))
Find an equation of the line through $(-4, 3)$ and $(5, -1)$.	
Verify using (5, -1) for (x_1, y_1) : $y - y_1 = m(x - x_1)$ Point-slope form $y - (-1) = -\frac{4}{9}[x - 5]$ 9(y + 1) = -4(x - 5) 9y + 9 = -4x + 20 9y = -4x + 11 $y = -\frac{4}{9}x + \frac{11}{9}$	
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.	2-90

2.5 Example 6(a) Finding Equations of Para Perpendicular Lines (page	
Find the equation in slope-intercept for line that passes through the point (2, – parallel to the line $3x - 2y = 5$.	
$y - y_1 = m(x - x_1)$	Point-slope form
$y - (-4) = \frac{3}{2}(x - 2)$	
$y + 4 = \frac{3}{2}x - 3$	
$y = \frac{3}{2}x - 7$	
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.	2-99

2.5 **Example 6(b)** Finding Equations of Parallel and Perpendicular Lines (page 236)

Find the equation in slope-intercept form of the line that passes through the point (2, -4) that is perpendicular to the line 3x - 2y = 5.

$$y - y_1 = m(x - x_1)$$
 Point-slope form

2-101

$$y - (-4) = -\frac{2}{3}(x - 2)$$
$$y + 4 = -\frac{2}{3}x + \frac{4}{3}$$
$$y = -\frac{2}{3}x - \frac{8}{3}$$

2: Example 7 Finding an Equation of a Line That Models
Data (page 238)
Average annual tuition and
fees for in-state students at
public 4-year colleges are
shown in the table for selected
years and in the graph below,
with
$$x = 0$$
 representing 1996,
 $x = 4$ representing 2000, etc.
$$\frac{1}{4} \int_{0}^{0} \int_{$$

2.5 Example 7(a) Finding an Eq Data _{(page} 238)	uation o	f a Line That Model
Find an equation that models the data. Use the data	Year	Cust (in dollars)
1998 and 2004.	1996	3151
	1998	3486
1998 is represented by $x = 2$ and 2004 is represented by $x = 8$.	2000	3774
	2002	4461
	2004	514R
Find the slope:	2006	5836
$m = \frac{5148 - 3486}{8 - 2} = \frac{1662}{6} = 277$		 National Center for Statistics: College Board,
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.		2-103

2.5 Example 7(b) Finding an Equation of a Line That Mod Data (page 238)	els
Use the equation from part (a) to predict the cost of tuition and fees in 2008.	f
For 2008, <i>x</i> = 12.	
y = 277x + 2932	
<i>y</i> = 277(12) + 2932 = 6256	
According to the model, average tuition and fees will be \$6256 in 2008.	
Copyright © 2008 Pearson Addison-Wesley. All rights reserved. 2-105	5

2.5 Example 8(a) Finding an Equation of a Line That Models Data (page 239) Use the points (1965, 39.3) and (1995, 58.9) to find a linear equation that models the data. Find the slope: $m = \frac{58.9 - 39.3}{1995 - 1965} = \frac{19.6}{30}$ Use either point for (x_1, y_1) . $y - y_1 = m(x - x_1)$ $y - 58.9 = \frac{19.6}{30}(x - 1995)$ $(x_1, y_1) - (1995, 58.9)$ y - 58.9 = .6533x - 1303.4y = .6533x - 1244.5

2.5 **Example 8(b)** Finding an Equation of a Line That Models Data (page 239)

Use the equation to estimate the percent for 2005. How does the result compare to the actual figure of 59.3%?

Let x = 2005. Solve for y:

y = .6533x - 1244.5

$$y = .6533(2005) - 1244.5 \approx 65.4$$

The model estimates about 65.4% in 2005.

This is 6.1% more than the actual figure of 59.3%.

pyright © 2008 Pearson Addison-Wesley. All rights reserved.

2-108

2.7 Example 3(b) Testing for Symmetry with Respect to an Axis _(page 262))
Test $y = \mathbf{x} - 3$ for symmetry with respect to the <i>x</i> -axis and the <i>y</i> -axis.	
Replace x with $-x$: $y = -x - 3 \Rightarrow y = x - 3$	
The result is the same as the original equation.	
The graph is symmetric with respect to the y-axis.	
Replace y with $-y$: $-y = x - 3$	
The result is the not same as the original equation.	
The graph is not symmetric with respect to the x-axis	s.
The graph is symmetric with respect to the y-axis on	ıly.
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.	2-128

.7 Example 3(c) Testing for Symmetry with Respect an Axis (page 262)	to
Test $2x - y = 6$ for symmetry with respect to the <i>x</i> -axis and the <i>y</i> -axis.	e
Replace x with $-x$: $2(-x) - y = 6 \Rightarrow -2x - y = 6$	
The result is not the same as the original equation.	
The graph is not symmetric with respect to the y-ax	kis.
Replace y with $-y$: $2x - (-y) = 6 \Rightarrow 2x + y = 6$	
The result is the not same as the original equation.	
The graph is not symmetric with respect to the x-ax	kis.
The graph is not symmetric with respect to either a	xis.
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.	2-130

2.7 Example 7 Translating a Graph Horizontally (page 266)								
	Graph $f(x) = (x+2)^2$. Compare a table of values for $g(x) = x^2$ with $f(x) = (x+2)^2$.							
	x	$g(x) = x^2$	$f(x)=(x+2)^2$					
-4 16 4								
	-3 9 1							
	-2	4	0					
	-1	1	1					
	0 0 4							
1 1 9								
Copyright © 2008 Pearso	Copyright © 2008 Pearson Addison-Wesley. All rights reserved. 2-140							

2.8 Example 2(c) Using Operations on Functions (page	276)
Let $f(x) = x^2 - 3x$ and $g(x) = 4x + 5$. Find $(fg)(x)$ give the domain.	and
$(fg)(x) = (x^2 - 3x)(4x + 5) = 4x^3 + 5x^2 - 12x^2 - = 4x^3 - 7x^2 - 15x$	15 <i>x</i>
The domain of fg is the intersection of the domains of f and g.	
Domain of $f: (-\infty, \infty)$ Domain of $g: (-\infty, \infty)$	
The domain of fg is $(-\infty,\infty)$	2-153

2.8 Example 3(b)	Evalua	ating Con	nbinations	of Functions
				(page 277)
Use the repre	senta	tions of t	he function	ons f and g to
evaluate (f + g	g)(1),	(f-g)(0)	, (<i>fg</i>)(–1)	and $\left(\frac{f}{q}\right)(-2)$.
	x	$f(\mathbf{x})$	g (x)	(0)
	-2	-5	0	_
	$^{-1}$	-3	2	
	0	$^{-1}$	4	
	1	1	6	
<i>f</i> (1) = 1 and	<i>g</i> (1) =	= 6, so (f	+ g)(1) =	1 + 6 = 7
f(0) = -1 and	d <i>g</i> (0)	= 4, so ((<i>f</i> – <i>g</i>)(1)	= -1 - 4 = -5
Copyright © 2008 Pearson Addison-W	esley. All rights	reserved.		2-157

2.8 Example 3(b)	Evalua	ating Cor	nbinations	of Functions (cont.)
Use the repre				ons <i>f</i> and <i>g</i> to
evaluate (f + g	g)(1),	(f-g)(0)	, (<i>fg</i>)(–1),	and $\left \frac{r}{a}\right (-2)$.
	x	$f(\mathbf{x})$	g (x)	(a)
	-2 -1 0 1	-5 -3 -1 1	0 2 4 6	
<i>f</i> (−1) = −3 and	<i>g</i> (-1)	= 2, so	(fg)(-1) =	(-3)(2) = -6
f(-2) = -5 and undefined	<i>g</i> (0) =	= 0, so ($\left(\frac{f}{g}\right)(-2) =$	$\frac{-5}{0}$, which is
Copyright © 2008 Pearson Addison-W	esley. All rights	reserved.		2-158

2.8 Example 3(c) Evaluating Combinations of Functions (page 277)
Use the representations of the functions f and g to evaluate $(f + g)(1)$, $(f - g)(0)$, $(fg)(-1)$, and $\left(\frac{f}{g}\right)(-2)$. f(x) = 3x + 4, $g(x) = - x $
f(1) = 3(1) + 4 = 7 and $g(1) = - 1 = -1$, so (f + g)(1) = 7 - 1 = 6
f(0) = 3(0) + 4 = 4 and $g(0) = - 0 = 0$, so (f - g)(0) = 4 - 0 = 4
Capyright © 2008 Pearson Addeon-Wesley. All rights reserved. 2-159

2.8 Example 3(c) Evaluating Combinations of Functio	o ns ge 277)
Use the representations of the functions f and g evaluate $(f + g)(1)$, $(f - g)(0)$, $(fg)(-1)$, and $\left(\frac{f}{g}\right)$ f(x) = 3x + 4, $g(x) = - x $	y to (-2).
f(-1) = 3(-1) + 4 = 1 and $g(-1) = - -1 = -1$, so $(fg)(1) = (1)(-1) = -1$	
$f(-2) = 3(-2) + 4 = -2$ and $g(-2) = - -2 = -2$, so $\left(\frac{f}{g}\right)(-2) = \frac{-2}{-2} = 1$	0
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.	2-160

2.8 Example 4 Find the Difference Quotient (page 278)

Let $f(x) = 3x^2 - 2x + 4$. Find the difference quotient and simplify the expression.

Step 1 Find
$$f(x + h)$$

 $\begin{aligned} f(x+h) &= 3(x+h)^2 - 2(x+h) + 4 \\ &= 3(x^2 + 2xh + h^2) - 2x - 2h + 4 \\ &= 3x^2 + 6xh + 3h^2 - 2x - 2h + 4 \end{aligned}$

2-161

.8 Example 4 Find the Difference Quotient (cont.)

Let $f(x) = 3x^2 - 2x + 4$. Find the difference quotient and simplify the expression.

Step 2 Find
$$f(x + h) - f(x)$$

sley. All rights re

$$f(x + h) - f(x)$$

= $(3x^2 + 6xh + 3h^2 - 2x - 2h + 4) - (3x^2 - 2x + 4)$
= $3x^2 + 6xh + 3h^2 - 2x - 2h + 4 - 3x^2 + 2x - 4$
= $6xh + 3h^2 - 2h$

2-162

2.8 Example 5(b) Evaluating Composite Functions (pag	e 279)
Let $f(x) = \sqrt{x+4}$ and $g(x) = \frac{2}{x}$. Find $(g \circ f)(5)$.	
First find $f(5): f(5) = \sqrt{5+4} = \sqrt{9} = 3$	
Now find $(g \circ f)(5)$: $(g \circ f)(5) = g(f(5)) = g(3) = \frac{2}{3}$	
Copyright & 2008 Pearson Addson-Wesley. All rights reserved.	2-165

2.8 Example 6(b) Determining Composite Functions and Their Domains (page 280)	
Let $f(x) = \sqrt{x-1}$ and $g(x) = 2x + 5$. Find $(g \circ f)(x)$ and determine its domain.	
$(g \circ f)(x) = g(f(x)) = 2\sqrt{x-1} + 5$	
Domain of f: $[1,\infty)$ Range of f: $[0,\infty)$	
Domain of g: (-∞,∞)	
Therefore, the domain of $(f \circ g)(x)$ is portion of the domain of g that intersects with the domain of f .	•
Domain of $(g \circ f)(x)$: $[1,\infty)$	
Copyright © 2008 Pearson Addison-Wesley. All rights reserved. 2-1	67

2.8 Example 7(a) Determining Composite Functions a Their Domains _(page 280)	ind
Let $f(x) = \frac{5}{x+4}$ and $g(x) = \frac{2}{x}$. Find $(f \circ g)(x)$ and determine its domain. $(f \circ g)(x) = f(g(x)) = \frac{5}{(2/x)+4} = \frac{5x}{2+4x}$	
Domain and range of g: $(-\infty, 0) \cup (0, \infty)$	
Domain of <i>f</i> : (-∞,-4)∪(-4,∞)	
Therefore, $g(x) \neq -4$: $\frac{2}{x} \neq -4 \Rightarrow x \neq -\frac{1}{2}$	
Domain of $(f \circ g)(x)$: $\left(-\infty, -\frac{1}{2}\right) \cup \left(-\frac{1}{2}, 0\right) \cup (0, \infty)$	
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.	2-168

2.8 Example 7(b) Determining Composite Functions a Their Domains (page 280)	ind
Let $f(x) = \frac{5}{x+4}$ and $g(x) = \frac{2}{x}$. Find $(g \circ f)(x)$ and determine its domain. $(g \circ f)(x) = g(f(x)) = \frac{2}{5/(x+4)} = \frac{2x+8}{5}$	
Domain of <i>f</i> : (-∞,-4)U(-4,∞) Range of <i>f</i> : (-∞,0)U(0,∞)	
Domain of <i>g</i> : (-∞,0)∪(0,∞)	
Since 0 is not in the range of f , the domain of $(g \circ f)(x)$ is $(-\infty, -4) \cup (-4, \infty)$	
Copyright © 2008 Pearson Addison-Wesley. All rights reserved.	2-169

2.8 Example 8 Showing that $(g \circ f)(x) \neq (f \circ g)(x)$ (page 281) Let f(x) = 2x - 5 and $g(x) = 3x^2 + x$. Show that $(g \circ f)(x) \neq (f \circ g)(x)$ in general. $(g \circ f)(x) = g(2x - 5) = 3(2x - 5)^2 + (2x - 5)$ $= 3(4x^2 - 20x + 25) + 2x - 5$ $= 12x^2 - 58x + 70$ $(f \circ g)(x) = f(3x^2 + x) = 2(3x^2 + x) - 5$ $= 6x^2 + 2x - 5$ In general, $12x^2 - 58x + 70 \neq 6x^2 + 2x - 5$ So, $(g \circ f)(x) \neq (f \circ g)(x)$ $2x^{2}$

Find functions <i>f</i> and <i>g</i> such that $(f \circ g)(x) = 4(3x + 2)^2 - 5(3x + 2) - 8.$ Note the repeated quantity $3x + 2$. Choose $g(x) = 3x + 2$ and $f(x) = 4x^2 - 5x - 8.$ Then $(f \circ g)(x) = 4(3x + 2)^2 - 5(3x + 2) - 8.$
Choose $g(x) = 3x + 2$ and $f(x) = 4x^2 - 5x - 8$.
Then $(f \circ g)(x) = 4(3x + 2)^2 - 5(3x + 2) - 8$.
There are other pairs of functions <i>f</i> and <i>g</i> that also work. For instance, let $f(x) = 4(x + 2)^2 - 5(x + 2) - 8$ and $g(x) = 3x$.