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Find an equation of the line through (3, –5) having 

slope –2. 

 

2.5 Example 1 Using the Point-Slope Form (Given a Point 
and the Slope) (page 232)  

Point-slope form: y – y1 = m(x – x1)  

x1 = 3, y1 = –5, m = –2 
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Find an equation of the line through (–4, 3)  

and (5, –1). 

 

2.5 Example 2 Using the Point-Slope Form (Given Two 
Points) (page 233)  

First, find the slope:  

Use either point for (x1, y1) 

Point-slope form 
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Find an equation of the line through (–4, 3)  

and (5, –1). 

 

2.5 Example 2 Using the Point-Slope Form (Given Two 
Points) (page 233)  

Verify using (5, –1) for (x1, y1) :  

Point-slope form 



2 
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The screen supports the result. 

2.5 Example 2 Using the Point-Slope Form (Given Two 
Points) (cont.)  
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Find the slope and y-intercept of the line with 

equation 3x – 4y = 12. 

 

2.5 Example 3 Find the Slope and y-intercept From an 
Equation of a Line (page 234)  

Write the equation in slope-intercept form: 

The slope is     and the y-intercept is –3.  
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Find an equation of the line through (–2, 4) and  

(2, 2). Then graph the line using the slope-

intercept form. 

2.5 Example 4 Using the Slope-Intercept Form (Given Two 
Points (page 234)  

First, find the slope:  

The equation is   

Substitute       for m and the coordinates of one of the 

points (say, (2, 2)) for x and y into the slope-intercept 

form y = mx + b, then solve for b:  
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2.5 Example 4 Using the Slope-Intercept Form (Given Two 
Points (cont.)  
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Use the graph to (a) find the slope, y-intercept, 

and x-intercept, and (b) write the equation of the 

function. 

2.5 Example 5 Finding an Equation From a Graph (page 235)  

The line rises 5 units each time the x-value increases 

by 2 units.  

The slope is    . 
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2.5 Example 5(a) Finding an Equation From a Graph (cont.)  

The graph intersects the y-axis at (5, 0) and the  

x-axis at (–2, 0). 

The y-intercept is 5. 

The x-intercept is –2. 



3 
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2.5 Example 5(b) Finding an Equation From a Graph (cont.)  

Slope    , y-intercept 5 

 

 

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 

 

2-98 

Find the equation in slope-intercept form of the 

line that passes through the point (2, –4) that is 

parallel to the line 3x – 2y = 5. 

2.5 Example 6(a) Finding Equations of Parallel and 
Perpendicular Lines (page 236)  

Write the equation in slope-intercept form to find the 

slope: 

The slope is   . 

Parallel lines have the same slope, so the slope of 

the line whose equation is to be found is    .  
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Find the equation in slope-intercept form of the 

line that passes through the point (2, –4) that is 

parallel to the line 3x – 2y = 5. 

2.5 Example 6(a) Finding Equations of Parallel and 
Perpendicular Lines (page 236)  

Point-slope form 
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Find the equation in slope-intercept form of the 

line that passes through the point (2, –4) that is 

perpendicular to the line 3x – 2y = 5. 

2.5 Example 6(b) Finding Equations of Parallel and 
Perpendicular Lines (page 236)  

Write the equation in slope-intercept form to find the 

slope: 

The slope is   . 

The slopes of perpendicular lines are negative 

reciprocals, so the slope of the line whose equation is to 

be found is       .  
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Find the equation in slope-intercept form of the 

line that passes through the point (2, –4) that is 

perpendicular to the line 3x – 2y = 5. 

2.5 Example 6(b) Finding Equations of Parallel and 
Perpendicular Lines (page 236)  

Point-slope form 
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Average annual tuition and 

fees for in-state students at 

public 4-year colleges are 

shown in the table for selected 

years and in the graph below, 

with x = 0 representing 1996,  

x = 4 representing 2000, etc. 

2.5 Example 7 Finding an Equation of a Line That Models 
Data (page 238)  



4 
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Find an equation that models 

the data. Use the data for 

1998 and 2004. 

2.5 Example 7(a) Finding an Equation of a Line That Models 
Data (page 238)  

1998 is represented by x = 2 

and 2004 is represented by  

x = 8.  

Find the slope: 
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2.5 Example 7(a) Finding an Equation of a Line That Models 
Data (cont.)  

Use either point, (2, 3486) or (8, 5148) for (x1, y1) 
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2.5 Example 7(b) Finding an Equation of a Line That Models 
Data (page 238)  

Use the equation from part (a) to predict the cost of 

tuition and fees in 2008. 

For 2008, x = 12. 

According to the model, average tuition and fees 

will be $6256 in 2008. 
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The table and graph illustrate how the percent of women in 

the civilian labor force has changed from 1960 to 2005. 

2.5 Example 8 Finding an Equation of a Line That Models 
Data (page 239)  

 

 

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 

 

2-107 

Use the points (1965, 39.3) and (1995, 58.9) to find 

a linear equation that models the data. 

2.5 Example 8(a) Finding an Equation of a Line That Models 
Data (page 239)  

Find the slope: 

Use either point for (x1, y1). 
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Use the equation to estimate the percent for 2005. 

How does the result compare to the actual figure of 

59.3%? 

2.5 Example 8(b) Finding an Equation of a Line That Models 
Data (page 239)  

Let x = 2005. Solve for y: 

The model estimates about 65.4% in 2005.  

This is 6.1% more than the actual figure of 59.3%. 



5 
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Use a graphing calculator to solve 

–3x + 2(5 – x) = 2x + 28 

2.5 Example 9 Solving an Equation with a Graphing 
Calculator (page 241)  

Write the equation as an equivalent equation with 0 on 

one side:  

Graph                                            , then find the x-intercept.  

The solution set is {–4}. 
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Graphs of Basic Functions 2.6 
 Continuity  The Identity, Squaring, and Cubing Functions   

The Square Root and Cube Root Functions   

The Absolute Value Function  Piecewise-Defined Functions  

The Relation x = y2 
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Describe the intervals of continuity for each function. 

 

2.6 Example 1 Determining Intervals of Continuity (page 248)  
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              Graph 

2.6 Example 2(a) Graphing Piecewise-Defined Functions 

 (page 251)  

Graph each interval of the domain separately. 

If x < 1, the graph of  

f(x) = 2x + 4 has an endpoint 

at (1, 6), which is not 

included as part of the graph.  

To find another point on this 

part of the graph, choose  

x = 0, so y = 4. Draw the ray 

starting at (1, 6) and 

extending through (0, 4).  
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      Graph 

2.6 Example 2(a) Graphing Piecewise-Defined Functions 

 (cont.)  

If x ≥ 1, f(x) = 4 − x has an 

endpoint at (1, 3), which is 

included as part of the graph.  

Find another point, say (4, 0), 

and draw the ray starting at 

(1, 3) which extends through 

(4, 0).  
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      Graph 

2.6 Example 2(a) Graphing Piecewise-Defined Functions 

 (cont.)  

Graphing calculator solution 



6 
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      Graph 

2.6 Example 2(b) Graphing Piecewise-Defined Functions 

 (page 251)  

Graph each interval of the domain separately. 

If x ≤ 0, the graph of  

f(x) = −x − 2 has an endpoint 

at (0, −2), which is included 

as part of the graph.  

To find another point on this 

part of the graph, choose  

x = −2, so y = 0. Draw the ray 

starting at (0, −2) and 

extending through (−2, 0).   
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               Graph 

2.6 Example 2(b) Graphing Piecewise-Defined Functions 

 (cont.)  

If x > 0, the graph of                   

has an endpoint at (0, −2), which is 

not included as part of the graph.  

Find another point, say (4, 0), and 

draw the ray starting at (0, −2) 

which extends through (4, 0).  

Note that the two endpoints 

coincide, so (0, −2) is included as 

part of the graph.  
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      Graph 

2.6 Example 2(b) Graphing Piecewise-Defined Functions
 (cont.)  

Graphing calculator solution 
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2.6 Example 3 Graphing a Greatest Integer Function  

 (page 253)  

Graph 

Create a table of sample ordered pairs: 

x –6 –3 0 

x 3 6 
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2.6 Example 4 Applying a Greatest Integer Function  

 (page 254)  

An express mail company charges $20 for a package 

weighing up to 2 lb and $2 for each additional pound or 

fraction of a pound. Let y = C(x) represent the cost to 

send a package weighing x pounds. Graph y = C(x) for 

x in the interval (0, 6]. 

For x in (0, 2], y = 20.  

For x in (2, 3], y = 20 + 2 = 22.  

For x in (3, 4], y = 22 + 2 = 24.  

For x in (4, 5], y = 24 + 2 = 26.  

For x in (5, 6], y = 26 + 2 = 28.  
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Graphing Techniques 2.7 
 Stretching and Shrinking  Reflecting  Symmetry   

Even and Odd Functions  Translations 



7 
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2.7 Example 1(a) Stretching or Shrinking a Graph (page 259)  

Graph the function 

x 

–2 

–1 

  0 

  1 

  2 

4 8 

1 2 

0 0 

1 2 

4 8 

Create a table of values. 

Note that for corresponding values of x, the y-values of g(x) 
are each twice that of f(x).  
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2.7 Example 1(b) Stretching or Shrinking a Graph (page 259)  

Graph the function 

x 

–2 

–1 

  0 

  1 

  2 

4 2 

1 ½ 

0 0 

1 ½ 

4 2 

Create a table of values. 

Note that for corresponding values of x, the y-values of g(x) 
are each half that of f(x). 
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2.7 Example 1(c) Stretching or Shrinking a Graph (page 259)  

Graph the function 

x 

–2 

–1 

  0 

  1 

  2 

4 1 

1 ¼ 

0 0 

1 ¼ 

4 1 

Create a table of values. 

Note that for corresponding values of x, the y-values of g(x) 
are each one-fourth that of f(x). 
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2.7 Example 2(a) Reflecting a Graph Across an Axis (page 261)  

Graph the function                  . 

x 

–2 

–1 

  0 

  1 

  2 

2 –2 

1 –1 

0 0 

1 –1 

2 –2 

Create a table of values. 

Note that every y-value of g(x) is the negative of the 
corresponding y-value of f(x). The graph of f(x) is reflected 
across the x-axis to give the graph of g(x). 
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2.7 Example 2(b) Reflecting a Graph Across an Axis  

 (page 261)  

Graph the function                  . 

x 

–2 

–1 

  0 

  1 

  2 

2 2 

1 1 

0 0 

1 1 

2 2 

Create a table of values. 

Note that every y-value of g(x) is the same of the 
corresponding y-value of f(x). The graph of f(x) is reflected 
across the y-axis to give the graph of g(x). 
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2.7 Example 3(a) Testing for Symmetry with Respect to  

an Axis  (page 262) 

Test            for symmetry with respect to the x-axis 

and the y-axis. 

Replace x with –x: 

The result is not the same as the original equation. 

The graph is not symmetric with respect to the y-axis. 

Replace y with –y: 

The result is the same as the original equation. 

The graph is symmetric with respect to the x-axis. 

The graph is symmetric with respect to the x-axis only. 



8 
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2.7 Example 3(a) Testing for Symmetry with Respect to  

an Axis  (cont.) 

Test            for symmetry with respect to the x-axis 

and the y-axis. 
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2.7 Example 3(b) Testing for Symmetry with Respect to  

an Axis  (page 262) 

Test                 for symmetry with respect to the  

x-axis and the y-axis. 

Replace x with –x: 

The result is the same as the original equation. 

The graph is symmetric with respect to the y-axis. 

Replace y with –y: 

The result is the not same as the original equation. 

The graph is not symmetric with respect to the x-axis. 

The graph is symmetric with respect to the y-axis only. 
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2.7 Example 3(b) Testing for Symmetry with Respect to  

an Axis  (cont.) 

Test                 for symmetry with respect to the  

x-axis and the y-axis. 
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2.7 Example 3(c) Testing for Symmetry with Respect to  

an Axis  (page 262) 

Test                  for symmetry with respect to the  

x-axis and the y-axis. 

Replace x with –x: 

The result is not the same as the original equation. 

The graph is not symmetric with respect to the y-axis. 

Replace y with –y: 

The result is the not same as the original equation. 

The graph is not symmetric with respect to the x-axis. 

The graph is not symmetric with respect to either axis. 
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2.7 Example 3(c) Testing for Symmetry with Respect to  

an Axis  (cont.) 

Test                  for symmetry with respect to the  

x-axis and the y-axis. 
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2.7 Example 3(d) Testing for Symmetry with Respect to  

an Axis  (page 262) 

Test                      for symmetry with respect to the  

x-axis and the y-axis. 

Replace x with –x: 

The result is the same as the original equation. 

The graph is symmetric with respect to the y-axis. 

Replace y with –y: 

The result is same as the original equation. 

The graph is symmetric with respect to the x-axis. 

The graph is symmetric with respect to both axes. 



9 
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2.7 Example 3(d) Testing for Symmetry with Respect to  

an Axis  (cont.) 

Test                      for symmetry with respect to the  

x-axis and the y-axis. 
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2.7 Example 4(a) Testing for Symmetry with Respect to  

the Origin  (page 264) 

Is the graph of                symmetric with respect to 

the origin? 

Replace x with –x and y with –y: 

The result is the same as the original 

equation. 

The graph is symmetric with 

respect to the origin. 
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2.7 Example 4(b) Testing for Symmetry with Respect to  

the Origin  (page 264) 

Is the graph of                symmetric with respect to 

the origin? 

Replace x with –x and y with –y: 

The result is not the same as 

the original equation. 

The graph is not symmetric with 

respect to the origin. 

 

 

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 

 

2-136 

2.7 Example 5(a) Determining Whether Functions are Even, 

Odd, or Neither  (page 265) 

Is the function even, odd, or neither? 

Replace x with –x: 

g(x) is an odd function. 
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2.7 Example 5(b) Determining Whether Functions are Even, 

Odd, or Neither  (page 265) 

Is the function even, odd, or neither? 

Replace x with –x: 

h(x) is an even function. 
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2.7 Example 5(c) Determining Whether Functions are Even, 

Odd, or Neither  (page 265) 

Is the function even, odd, or neither? 

Replace x with –x: 

k(x) is neither even nor odd. 



10 
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2.7 Example 6 Translating a Graph Vertically (page 261) 

Graph                     . 

Compare a table of values for                 with                     . 

x 

–2 

–1 

  0 

  1 

  2 

4 6 

1 3 

0 2 

1 3 

4 6 

The graph of f(x) is the same as the graph of g(x) 
translated 2 units up.   
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2.7 Example 7 Translating a Graph Horizontally (page 266) 

Graph                      . 

x 

–4 

–3 

 –2 

 –1 

  0 

  1 

16 4 

9 1 

4 0 

1 1 

0 4 

Compare a table of values for                with                       . 

1 9 
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2.7 Example 7 Translating a Graph Horizontally (cont.) 

Graph                      . 

The graph of f(x) is the same as the graph of g(x) 
translated 2 units left. 
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2.7 Example 8(a) Using More Than One Transformation on 

Graphs (page 268) 

Graph                               . 

This is the graph of                 

translated one unit to the 

right, reflected across 

the x-axis, and then 

translated four units up. 

 

 

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 

 

2-143 

2.7 Example 8(b) Using More Than One Transformation on 

Graphs (page 268) 

Graph                        . 

This is the graph of                          

                translated 

three units to the left, 

reflected across the  

x-axis, and then 

stretched vertically by a 

factor of 2. 
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2.7 Example 8(c) Using More Than One Transformation on 

Graphs (page 268) 

Graph                              . 

This is the graph of  

                 translated two 

units to the left, shrunk 

vertically by a factor of 2, 

then translated 3 units 

down. 



11 

 

 

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 

 

2-145 

2.7 Example 9(a) Graphing Translations Given the Graph of 

y = f(x) (page 269) 

Use the graph of f(x) to sketch the graph of  

g(x) = f(x) – 2. 

Translate the graph of f(x)  

2 units down. 
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2.7 Example 9(b) Graphing Translations Given the Graph of 

y = f(x) (page 269) 

Use the graph of f(x) to sketch the graph of  

h(x) = f(x – 2). 

Translate the graph of f(x)  

2 units right. 

 

 

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 

 

2-147 

2.7 Example 9(c) Graphing Translations Given the Graph of 

y = f(x) (page 269) 

Use the graph of f(x) to sketch the graph of  

k(x) = f(x + 1) + 2. 

Translate the graph of f(x)  

1 units left and 2 units up. 
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Function Operations and Composition 2.8 
 Arithmetic Operations on Functions  The Difference Quotient  

Composition of Functions and Domain 
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2.8 Example 1 Using Operations on Functions (page 275) 

Let f(x) = 3x – 4 and g(x) = 2x2 – 1. Find:   

(a) (f + g)(0) 

f(0) = 3(0) – 4 = –4 and g(0) = 2(0)2 – 1 = –1, so 

(f + g)(0) = –4 – 1 = –5. 

(b) (f – g)(4) 

f(4) = 3(4) – 4 = 8 and g(4) = 2(4)2 – 1 = 31, so  

(f – g)(4) = 8 – 31 = –23. 
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2.8 Example 1 Using Operations on Functions (cont.) 

Let f(x) = 3x – 4 and g(x) = 2x2 – 1. Find:   

(c) (fg)(–2) 

f(–2) = 3(–2) – 4 = –10 and  

g(–2) = 2(–2)2 – 1 = 7, so  

(fg)(–2) = (–10)(7) = –70. 

(d) 

f(3) = 3(3) – 4 = 5 and g(3) = 2(3)2 – 1 = 17, so  



12 
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2.8 Example 2(a) Using Operations on Functions (page 276) 

Let f(x) = x2 – 3x and g(x) = 4x + 5. Find (f + g)(x) 

and give the domain.   

(f + g)(x) = (x2 – 3x) + (4x + 5) = x2 + x + 5  

Domain of f:                    Domain of g:  

The domain of f + g is the intersection of the 

domains of f and g. 

The domain of f + g is 
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2.8 Example 2(b) Using Operations on Functions (page 276) 

Let f(x) = x2 – 3x and g(x) = 4x + 5. Find (f – g)(x) 

and give the domain.   

(f – g)(x) = (x2 – 3x) – (4x + 5) = x2 – 7x – 5 

Domain of f:                    Domain of g:  

The domain of f – g is the intersection of the 

domains of f and g. 

The domain of f – g is 
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2.8 Example 2(c) Using Operations on Functions (page 276) 

Let f(x) = x2 – 3x and g(x) = 4x + 5. Find (fg)(x) and 

give the domain.   

(fg)(x) = (x2 – 3x)(4x + 5) = 4x3 + 5x2 – 12x2 – 15x 

Domain of f:                    Domain of g:  

The domain of fg is the intersection of the 

domains of f and g. 

The domain of fg is 

= 4x3– 7x2 – 15x 
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2.8 Example 2(d) Using Operations on Functions (page 276) 

Let f(x) = x2 – 3x and g(x) = 4x + 5. Find  

and give the domain.   

Domain of f:                    Domain of g:  

The domain of     is the intersection of the 

domains of f and g such that g(x) ≠ 0. 

The domain of      is 
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2.8 Example 3(a) Evaluating Combinations of  Functions 

 (page 277) 

Use the representations of the functions f and g to 

evaluate (f + g)(1), (f – g)(0), (fg)(–1), and  

f(1) = 3 and g(1) = 1, so  

(f + g)(1) = 3 + 1 = 4 

f(0) = 4 and g(0) = 0, so  

(f – g)(1) = 4 – 0 = 4 
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2.8 Example 3(a) Evaluating Combinations of  Functions 

 (cont.) 

Use the representations of the functions f and g to 

evaluate (f + g)(1), (f – g)(0), (fg)(–1), and  

f(–1) = 3 and g(–1) = 1, so  

(fg)(–1) = (3)(1) = 3 

f(–2) = 0 and g(–2) = 2, so  

 



13 
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2.8 Example 3(b) Evaluating Combinations of  Functions 

 (page 277) 

Use the representations of the functions f and g to 

evaluate (f + g)(1), (f – g)(0), (fg)(–1), and  

f(1) = 1 and g(1) = 6, so (f + g)(1) = 1 + 6 = 7 

f(0) = –1 and g(0) = 4, so (f – g)(1) = –1 – 4 = –5 
 

 

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 

 

2-158 

2.8 Example 3(b) Evaluating Combinations of  Functions 

 (cont.) 

Use the representations of the functions f and g to 

evaluate (f + g)(1), (f – g)(0), (fg)(–1), and  

f(–1) = –3 and g(–1) = 2, so (fg)(–1) = (–3)(2) = –6 

f(–2) = –5 and g(0) = 0, so                       , which is 

undefined 
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2.8 Example 3(c) Evaluating Combinations of  Functions 

 (page 277) 

Use the representations of the functions f and g to 

evaluate (f + g)(1), (f – g)(0), (fg)(–1), and  

f(1) = 3(1) + 4 = 7 and g(1) = –|1| = –1, so  

(f + g)(1) = 7 – 1 = 6 

f(0) = 3(0) + 4 = 4 and g(0) = –|0| = 0, so  

(f – g)(0) = 4 – 0 = 4 
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2.8 Example 3(c) Evaluating Combinations of  Functions 

 (page 277) 

Use the representations of the functions f and g to 

evaluate (f + g)(1), (f – g)(0), (fg)(–1), and  

f(–1) = 3(–1) + 4 = 1 and g(–1) = –|–1| = –1, so  

(fg)(1) = (1)(–1) = –1 

f(–2) = 3(–2) + 4 = –2 and g(–2) = –|–2| = –2, so  

 

 

 

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 

 

2-161 

2.8 Example 4 Find the Difference Quotient (page 278) 

Let f(x) = 3x2 – 2x + 4. Find the difference quotient 

and simplify the expression. 

Step 1 Find f(x + h) 

f(x + h) = 3(x + h)2 – 2(x + h) + 4 

= 3(x2 + 2xh + h2) – 2x – 2h + 4 

= 3x2 + 6xh + 3h2 – 2x – 2h + 4 
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2.8 Example 4 Find the Difference Quotient (cont.) 

Let f(x) = 3x2 – 2x + 4. Find the difference quotient 

and simplify the expression. 

Step 2 Find f(x + h) – f(x) 

f(x + h) – f(x) 

= (3x2 + 6xh + 3h2 – 2x – 2h + 4) – (3x2 – 2x + 4) 

= 3x2 + 6xh + 3h2 – 2x – 2h + 4 – 3x2 + 2x – 4 

= 6xh + 3h2 – 2h 
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2.8 Example 4 Find the Difference Quotient (cont.) 

Let f(x) = 3x2 – 2x + 4. Find the difference quotient 

and simplify the expression. 

Step 3 Find the difference quotient,  
f(x + h) – f(x) 

h 

= 
f(x + h) – f(x) 

h 

6xh + 3h2 – 2h 

h 
= 6x + 3h – 2 
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2.8 Example 5(a) Evaluating Composite Functions (page 279) 

Let                       and                . Find              .  

First find g(2):  

Now find               :  
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2.8 Example 5(b) Evaluating Composite Functions (page 279) 

Let                       and                . Find              .  

First find f(5):  

Now find               :  
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2.8 Example 6(a) Determining Composite Functions and 

Their Domains (page 280) 

Let                      and                     . Find               

and determine its domain.  

Domain and range of g:  

Domain of f:  

Therefore, g(x) must be greater than 1: 

Domain of 
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2.8 Example 6(b) Determining Composite Functions and 

Their Domains (page 280) 

Let                      and                     . Find               

and determine its domain.  

Domain of g:  

Domain of f:              Range of f:   

Therefore, the domain of                is portion of the 

domain of g that intersects with the domain of f. 

Domain of 
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2.8 Example 7(a) Determining Composite Functions and 

Their Domains (page 280) 

Let                      and               . Find               

and determine its domain.  

Therefore, g(x) ≠ –4: 

Domain and range of g:  

Domain of f:  

Domain of 
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2.8 Example 7(b) Determining Composite Functions and 

Their Domains (page 280) 

Let                      and               . Find               

and determine its domain.  

Domain of g:  

Domain of f:  

Range of f:  

Since 0 is not in the range of f, the domain of  
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2.8 Example 8 Showing that (g ◦ f )(x) ≠ (f ◦ g)(x) (page 281) 

Let f(x) = 2x – 5 and g(x) = 3x2 + x. Show that  

(g ◦ f )(x) ≠ (f ◦ g)(x) in general. 

In general,                                               .  

So, (g ◦ f )(x) ≠ (f ◦ g)(x) 
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2.8 Example 9 Finding Functions That Form a Given 

Composite (page 282) 

Find functions f and g such that  

(f ◦ g )(x) = 4(3x + 2)2 – 5(3x + 2) – 8. 

Note the repeated quantity 3x + 2. 

Choose g(x) = 3x + 2 and f(x) = 4x2 – 5x – 8. 

Then (f ◦ g )(x) = 4(3x + 2)2 – 5(3x + 2) – 8. 

There are other pairs of functions f and g that also 

work. For instance, let f(x) = 4(x + 2)2 – 5(x + 2) – 8 

and g(x) = 3x. 


