

















**R.5 Example 3(a)** Adding or Subtracting  
Rational Expressions (page 47)  
Add 
$$\frac{3}{10z^4} + \frac{2}{15z^2}$$
  
Find the LCD:  
 $10z^4 = 2 \cdot 5 \cdot z^4$   
 $15z^2 = 3 \cdot 5 \cdot z^2$   
 $LCD = 2 \cdot 3 \cdot 5 \cdot z^4 = 30z^4$   
 $\frac{3}{10z^4} + \frac{2}{15z^2} = \frac{3 \cdot 3}{10z^4 \cdot 3} + \frac{2 \cdot 2z^2}{15z^2 \cdot 2z^2}$   
 $= \frac{9}{30z^4} + \frac{4z^2}{30z^4} = \frac{9 + 4z^2}{30z^4}$ 

R.5 Example 3(b) Adding or Subtracting  
Rational Expressions (page 47)  
Add 
$$\frac{7}{m-5} + \frac{2m}{5-m}$$
  
Find the LCD:  $m-5 = m-5$   
 $5-m = (-1)(m-5)$   
 $LCD = m-5$   
 $\frac{7}{m-5} + \frac{2m}{5-m} = \frac{7}{m-5} + \frac{2m(-1)}{(5-m)(-1)}$   
 $= \frac{7}{m-5} + \frac{-2m}{m-5}$   
 $= \frac{7-2m}{m-5}$  or  $\frac{2m-7}{5-m}$   
Reference 2009 Person Address Works, M rights reserved.

| R.5 Example 3(c) Adding or Subtracting<br>Rational Expressions (page 47) |             |
|--------------------------------------------------------------------------|-------------|
| Subtract $\frac{4}{(x-3)(x+5)} - \frac{6}{(x+5)(x-5)}$                   |             |
| Find the LCD: $(x-3)(x+5)(x-5)$                                          |             |
| $\frac{4}{(x-3)(x+5)} - \frac{6}{(x+5)(x-5)}$                            |             |
| $=\frac{4(x-5)}{(x-3)(x+5)(x-5)}-\frac{6(x-3)}{(x-3)(x+5)(x-5)}$         | (-5)        |
| $=\frac{4x-20-(6x-18)}{(x-3)(x+5)(x-5)}=\frac{-2x-2}{(x-3)(x+5)(x-5)}$   | <u>x-5)</u> |
| Copyright © 2008 Pearson Addison-Wesley. All rights reserved.            | R-81        |

**R.5 Example 4(a)** Simplifying Complex Fractions (page 49)  
Simplify 
$$\frac{3 + \frac{4}{x^2}}{6 - \frac{1}{x^2}}$$
  
Multiply the numerator and denominator by the LCD of all the fractions,  $x^2$ .  
 $\frac{3 + \frac{4}{x^2}}{6 - \frac{1}{x^2}} = \frac{x^2 \left(3 + \frac{4}{x^2}\right)}{x^2 \left(6 - \frac{1}{x^2}\right)} = \frac{3x^2 + 4}{6x^2 - 1}$ 

R.5 Example 4(b) Simplifying Complex Fractions (page 49)  
Simplify 
$$\frac{\frac{1}{z+1} - \frac{1}{z-1}}{\frac{1}{z} + \frac{1}{z+1}}$$
  
Multiply the numerator and denominator by the LCD of all the fractions,  $z(z + 1)(z - 1)$ .  
 $\frac{\frac{1}{z+1} - \frac{1}{z-1}}{\frac{1}{z} + \frac{1}{z+1}} = \frac{z(z+1)(z-1)(\frac{1}{z+1} - \frac{1}{z-1})}{z(z+1)(z-1)(\frac{1}{z} + \frac{1}{z+1})}$   
 $= \frac{z(z-1) - z(z+1)}{(z+1)(z-1) + z(z-1)}$   
 $= \frac{z^2 - z - z^2 - z}{z^2 - 1 + z^2 - z} = \frac{-2z}{2z^2 - z - 1}$ 





## R.6 Example 1 Using the Definition of a Negative Exponent (cont.)

Write the expression without negative exponents.

(d) 
$$mn^{-4} = \frac{m}{n^4}$$
  
(e)  $(mn)^{-4} = \frac{1}{(mn)^4} = \frac{1}{m^4 n^4}$ 

R.6 Example 2 Using the Quotient Rule (page 54)  
Simplify each expression.  
(a) 
$$\frac{15^8}{15^3} = 15^{8-3} = 15^5$$
 (b)  $\frac{y^4}{y^{-9}} = y^{4-(-9)} = y^{13}$   
(c)  $\frac{35r^6}{25r^{-4}} = \frac{7r^{6-(-4)}}{5} = \frac{7r^{10}}{5}$   
(d)  $\frac{34a^8b^{11}}{51a^{12}b^5} = \frac{34}{51} \cdot \frac{a^8}{a^{12}} \cdot \frac{b^{11}}{b^5} = \frac{2}{3}a^{8-12}b^{11-5}$   
 $= \frac{2}{3}a^{-4}b^6 = \frac{2b^6}{3a^4}$   
Capital 2020 Parton (March Weathy, Kingthe memory)

**R.6 Example 3(a) Using Rules for Exponents (page 54)**  
Simplify.  

$$5x^{3}(2^{-1}x^{4})^{-3} = 5x^{3}(2^{-1(-3)}x^{4(-3)})$$
  
 $= 5x^{3}(2^{3}x^{-12})$   
 $= 5x^{3-12}(8)$   
 $= 5x^{-9}(8)$   
 $= \frac{40}{x^{9}}$   
Calculated Comparison Addition Weeklyr. All reports reserved.

## R.6 Example 3(b) Using Rules for Exponents (page 54)

Simplify.  

$$\frac{30r^{4}s^{-9}}{45r^{-6}s^{3}} = \frac{30}{45} \cdot \frac{r^{4}}{r^{-6}} \cdot \frac{s^{-9}}{s^{3}}$$

$$= \frac{2}{3} \cdot r^{4-(-6)} \cdot s^{-9-3}$$

$$= \frac{2}{3} \cdot r^{10} \cdot s^{-12}$$

$$= \frac{2r^{10}}{3s^{12}}$$
26000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 200



| R.6 Example 4 Using the E                                  | Definition of $a^{1/n}$ (page 55)      |      |
|------------------------------------------------------------|----------------------------------------|------|
| Evaluate each expres (a) $49^{1/2} = 7$                    | sion.<br>(b) −144 <sup>1/2</sup> = −12 |      |
| (c) $-(144)^{1/2} = -12$                                   | (d) $64^{1/6} = 2$                     |      |
| (e) $(-64)^{1/6}$ not a real number                        | (f) $-64^{1/6} = -2$                   |      |
| (g) $(-125)^{1/3} = -5$                                    | (h) $-64^{1/3} = -4$                   |      |
| Copyright © 2008 Pearson Addison-Wesley. All rights reserv | ed.                                    | R-91 |



| R.6 Example 5 Using the Definition of a <sup>m/n</sup> (cont.)                              |                   |
|---------------------------------------------------------------------------------------------|-------------------|
| Evaluate each expression.<br>(d) $(-64)^{2/3} = \left[ (-64)^{1/3} \right]^2 = (-4)^2 = 16$ |                   |
| (e) $216^{-2/3} = (216^{1/3})^{-2} = 6^{-2} = \frac{1}{6^2} = \frac{1}{36}$                 |                   |
| (f) $(-100)^{3/2}$ is not a real number because $(-10)$ is not a real number.               | 0) <sup>1/2</sup> |
| Copyright © 2008 Pearson Addison-Wesley. All rights reserved.                               | R-93              |



| R.6 Example 6 Combining the Definitions and Rules for<br>Exponents (cont.)                                                                                                                                         |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Simplify each expression.                                                                                                                                                                                          |      |
| (d) $\left(\frac{5m^{4/3}}{n^{2/3}}\right)^2 \left(\frac{m^4}{8n^5}\right)^{1/3} = \frac{5^2m^{8/3}}{n^{4/3}} \cdot \frac{m^{4/3}}{8^{1/3}n^{5/3}}$<br>= $\frac{25m^{8/3+4/3}}{2n^{4/3+5/3}} = \frac{25m^4}{2n^3}$ |      |
| (e) $y^{3/7} \left( y^{4/7} - 5y^{11/7} \right) = y^{3/7 + 4/7} - 5y^{3/7 + 11/7}$<br>= $y - 5y^2$                                                                                                                 |      |
| Copyright © 2008 Pearson Addison-Wesley. All rights reserved.                                                                                                                                                      | R-95 |









**R.7 Example 1** Evaluating Roots (cont.)  
Write each root using exponents and evaluate.  
(e) 
$$\sqrt[3]{\frac{125}{512}} = (\frac{125}{512})^{1/3} = \frac{125^{1/3}}{512^{1/3}} = \frac{5}{8}$$
  
(f)  $-\sqrt[5]{-243} = -(-243)^{1/5} = -(-3) = 3$ 

**R.7 Example 2** Converting From Rational Exponents to  
Radicals (page 63)  
Write in radical form and simplify.  
(a) 
$$16^{3/4} = (\sqrt[4]{16})^3 = 2^3 = 8$$
  
(b)  $(-64)^{2/3} = (\sqrt[3]{-64})^2 = (-4)^2 = 16$   
(c)  $-121^{3/2} = -(\sqrt{121})^3 = -11^3 = -1331$   
(d)  $y^{7/8} = \sqrt[8]{y^7}, y \ge 0$ 



**R.7 Example 3** Converting From Radicals to Rational  
Exponents (page 63)  
Write in exponential form.  
(a) 
$$\sqrt[7]{n^3} = n^{3/7}$$
 (b)  $\sqrt[4]{10x} = (10x)^{1/4}$   
(c)  $15(\sqrt[3]{r})^4 = 15^{4/3}$   
(d)  $-2\sqrt[5]{(3x^2)^8} = -2\sqrt[5]{3^8x^{16}} = -2 \cdot 3^{8/5}x^{16/5}$   
(e)  $\sqrt[3]{r^2 + s^4} = (r^2 + s^4)^{1/3}$   
Copyright 9 2008 Pageon Addiegn-Wesley. All rights reserved.

R.7 Example 4 Using Absolute Value to  
Simplify Roots (page 64)  
Simplify each expression.  
(a) 
$$\sqrt{z^6} = \sqrt{(z^3)^2} = |z^3|$$
  
(b)  $\sqrt[7]{t^7} = t^{7/7} = t$   
(c)  $\sqrt{81r^8s^{10}} = |9r^4s^5| = 9r^4|s^5|$   
(d)  $\sqrt[4]{(-3)^4} = |-3| = 3$   
Copyright 0 2008 Paramerer Addison-Wesley. All rights reasoned.  
R-104

**R.7 Example 4 Using Absolute Value to**  
Simplify Roots (cont.)  
Simplify each expression.  
(e) 
$$\sqrt[5]{m^{10}} = m^{10/5} = m^2$$
  
(f)  $\sqrt{(3x-4)^2} = |3x-4|$   
(g)  $\sqrt{x^2-10x+25} = \sqrt{(x-5)^2} = |x-5|$ 







**R.7 Example 7** Adding and Subtracting  
Like Radicals (page 66)  
Add or subtract as indicated.  
(a) 
$$14\sqrt{5pq} - 11\sqrt{5pq} = (14 - 11)\sqrt{5pq}$$
  
 $= 3\sqrt{5pq}$   
(b)  $\sqrt{75ab^3} - b\sqrt{12ab} = \sqrt{3 \cdot 25ab^2b} - b\sqrt{4 \cdot 3ab}$   
 $= 5b\sqrt{3ab} - 2b\sqrt{3ab}$   
 $= (5b - 2b)\sqrt{3ab}$   
 $= 3b\sqrt{3ab}$ 

**R.7 Example 7** Adding and Subtracting  
Like Radicals (cont.)  
Add or subtract as indicated.  
(c) 
$$\sqrt[3]{81x^5y^7} + \sqrt[3]{24x^8y^4}$$
  
 $= \sqrt[3]{27 \cdot 3x^3x^2y^6y} + \sqrt[3]{8 \cdot 3x^6x^2y^3y}$   
 $= 3xy^2\sqrt[3]{3x^2y} + 2x^2y\sqrt[3]{3x^2y}$   
 $= (3xy^2 + 2x^2y)\sqrt[3]{3x^2y}$ 

R.7 Example 8 Simplifying Radicals by Writing Them With  
Rational Exponents (page 67)  
Simplify each radical.  
(a) 
$${}^{1}\sqrt[9]{2^{5}} = 2^{5/10} = 2^{1/2} = \sqrt{2}$$
  
(b)  ${}^{3}\sqrt[3]{a^{9}b^{18}} = a^{9/3}b^{18/3} = a^{3}b^{6}$   
(c)  ${}^{6}\sqrt[3]{4^{2}} = {}^{18}\sqrt[9]{4^{2}} = 4^{2/18} = 4^{1/9} = {}^{9}\sqrt[9]{4}$ 



## R.7 Example 9(b) Multiplying Radical Expressions (page 68) Find the product. $(5+\sqrt{32})(3-\sqrt{2}) = (5+\sqrt{2\cdot16})(3-\sqrt{2})$ simplify $\sqrt{32}$ $= (5+4\sqrt{2})(3-\sqrt{2})$ $= 15-5\sqrt{2}+12\sqrt{2}-4\sqrt{2}\sqrt{2}$ FOIL $= 15-5\sqrt{2}+12\sqrt{2}-8$

 $=7+7\sqrt{2}$ 

R-113







