

Characteristics of the Chi-Square Distribution

1. It is not symmetric.

2. The shape of the chi-square distribution depends upon the degrees of freedom, just like Student's *t*-distribution.

Characteristics of the Chi-Square Distribution

1. It is not symmetric.

2. The shape of the chi-square distribution depends upon the degrees of freedom, just like Student's *t*-distribution.

3. As the number of degrees of freedom increases, the chi-square distribution becomes more symmetric as is illustrated in Figure 1.

Characteristics of the Chi-Square Distribution

1. It is not symmetric.

2. The shape of the chi-square distribution depends upon the degrees of freedom, just like Student's *t*-distribution.

3. As the number of degrees of freedom increases, the chi-square distribution becomes more symmetric as is illustrated in Figure 1.

4. The values are non-negative. That is, the values of χ^2 are greater than or equal to 0.

Example 11-3: ATM Usage (p. 495)

A bank has an ATM installed inside the bank, and it is available to its customers only from 7 AM to 6 PM Mon – Fri. The manager of the bank wanted to investigate if the percentage of transactions made on the ATM is the same for each of the five days (M – F) of the week. She randomly selected one week and counted the number of transactions made on this ATM on each of the 5 days. At $\alpha = 0.01$, can we reject the null hypothesis that the proportion of people who use this ATM each of the 5 days is the same? (Assume this week is typical of all weeks regarding ATM use)

DAY	Mon	Tues	Wed	Thurs	Fri	
# of users	253	197	204	279	267	
		Blun	nan, Chapter 11			23

32

Bluman, Chapter 11

Graphing Calculator

- Press 2nd x⁻¹ for MATRIX and move the cursor to edit, then press enter
- Enter the number of rows & columns then enter
- Enter the values in the matrix as they appear in the contingency table
- Press STAT TEST C: χ² Test Make sure the observed matrix is [A] and the expected matrix is [B]

37

39

Calculate, enter
Bluman, Chapter 11

Example6: Alcohol and Gender A researcher wishes to determine whether there is a relationship between the gender of an individual and the amount of alcohol consumed. A sample of 68 people is selected, and the following data are obtained. At $\alpha = 0.10$, can the researcher conclude that alcohol consumption is related to gender? **Alcohol Consumption** Gender Low Moderate High Total Male 10 9 8 27 16 12 Female 13 41 Total 23 25 20 68

Bluman, Chapter 11

Graphing Calculator

- Press 2nd x⁻¹ for MATRIX and move the cursor to edit, then press enter
- Enter the number of rows & columns then enter
- Enter the values in the matrix as they appear in the contingency table
- Press STAT TEST C: χ² Test Make sure the observed matrix is [A] and the expected matrix is [B]
- Calculate, enter
 Bluman, Chapter 11

Assumptions for Homogeneity of Proportions

- 1. The data are obtained from a random sample.
- 2. The expected frequency for each category must be 5 or more.

Bluman, Chapter 11

47

Example 7: Lost Luggage

A researcher selected 100 passengers from each of 3 airlines and asked them if the airline had lost their luggage on their last flight. The data are shown in the table. At $\alpha = 0.05$, test the claim that the proportion of passengers from each airline who lost luggage on the flight is the same for each airline.

Yes 10 7 4 21 No 90 93 96 279
No 90 93 96 279
Total 100 100 100 300

Graphing Calculator

- Press 2nd x⁻¹ for MATRIX and move the cursor to edit, then press enter
- Enter the number of rows & columns then enter
- Enter the values in the matrix as they appear in the contingency table
- Press STAT TEST C: χ² Test Make sure the observed matrix is [A] and the expected matrix is [B]

49

Calculate, enter
Bluman, Chapter 11
Bluman, Chapte

Exa	mple	7: Los	t Lugg	age			
Cor	npute the $=\frac{(row sur}{row sur}$	e expected m)(column rand total	d values.	$E_{1,1} = \frac{(21)}{3}$	$\frac{(100)}{00} = 7$,	
		Airline 1	Airline 2	Airline 3	Total		
	Yes	10 (7)	7 (7)	4 (7)	21		
	No	90 (93)	93 (93)	96 (93)	279		
	Total	100	100	100	300		
	Bluman, Chapter 11						

