

## Chapter 11 Overview

Introduction

- 11-1 Test for Goodness of Fit
- 11-2 Tests Using Contingency Tables


## Chapter 11 Objectives

1. Test a distribution for goodness of fit, using chi-square.
2. Test two variables for independence, using chi-square.
3. Test proportions for homogeneity, using chi-square.

## Characteristics of the Chi-Square Distribution

1. It is not symmetric.
2. The shape of the chi-square distribution depends upon the degrees of freedom, just like Student's $t$-distribution.

## Characteristics of the Chi-Square Distribution

1. It is not symmetric.

Characteristics of the Chi-Square Distribution

1. It is not symmetric.
2. The shape of the chi-square distribution depends upon the degrees of freedom, just like Student's $t$-distribution.
3. As the number of degrees of freedom increases, the chi-square distribution becomes more symmetric as is illustrated in Figure 1.

| Characteristics of the Chi-Square Distribution |
| :--- |
| 1. It is not symmetric. |
| 2. The shape of the chi-square distribution |
| depends upon the degrees of freedom, just like |
| Student's $t$-distribution. |
|  |
|  |

## Characteristics of the Chi-Square Distribution

1. It is not symmetric.
2. The shape of the chi-square distribution depends upon the degrees of freedom, just like Student's $t$-distribution.
3. As the number of degrees of freedom increases, the chi-square distribution becomes more symmetric as is illustrated in Figure 1.
4. The values are non-negative. That is, the values of $\chi^{2}$ are greater than or equal to 0 .


## Reading the $\chi^{2}$ Table

- Find the value of $\chi^{2}$ for 7 df and an area of 0.10 in the right tail of the chi-square distribution curve. a specific pattern. This is referred to as the chi-square goodness-of-fit test.


## Reading the $\chi^{2}$ Table

- Find the value of $\chi^{2}$ for 12 df and an area of 0.05 in the left tail of the chi-square distribution curve.


## Test for Goodness of Fit

Formula for the test for goodness of fit:

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

where
d.f. $=k-1$; number of categories minus 1
$O=$ observed frequency
$E=$ expected frequency

## Assumptions for Goodness of Fit

1. The data are obtained from a random sample.
2. The expected frequency for each category must be 5 or more.

## Example 1: Fruit Soda Flavors

|  | Cherry | Strawberry | Orange | Lime | Grape |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Observed | 32 | 28 | 16 | 14 | 10 |
| Expected | 20 | 20 | 20 | 20 | 20 |

Step 2: Find the critical value.

$$
\text { D.f. }=5-1=4 \text {, and } \alpha=0.05 . \mathrm{CV}=9.488
$$

Step 3: Compute the test value.

$$
\begin{aligned}
& \chi^{2}=\sum \frac{(O-E)^{2}}{E} \\
&=\frac{(32-20)^{2}}{20}+\frac{(28-20)^{2}}{20}+\frac{(16-20)^{2}}{20}+\frac{(14-20)^{2}}{20} \\
&+\frac{(10-20)^{2}}{20}=18.0 \\
& \text { Bluman, Chapper } 11
\end{aligned}
$$

## Example 1: Fruit Soda Flavors

Step 4: Make the decision.
The decision is to reject the null hypothesis, since $18.0>9.488$.


Step 5: Summarize the results.
There is enough evidence to reject the claim that consumers show no preference for the flavors.

Example 1: Usina vour araphina calc.

|  | Cherry | Strawberry | Orange | Lime | Grape |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Observed | 32 | 28 | 16 | 14 | 10 |
| Expected | 20 | 20 | 20 | 20 | 20 |

Step 2: Enter the observed values into $L_{1}$
Enter the expected values into $\mathrm{L}_{2}$ calculate first and enter or enter as $100^{*}$.2
Step 3: STATS - TEST- D: $\chi^{2}$ GOF - Test
Observed: $\mathrm{L}_{1}$
Expected: $\mathrm{L}_{2}$
df: 4
Calculate
This should be displayed on your screen:

$$
\chi^{2}=18
$$

$\mathrm{p}=.001234098$
$\mathrm{df}=4$ and CNTRB=(7.2 3.2...

Example 2: Retirees

|  | New <br> Company | Self- <br> Employed | Free- <br> lancing | Owns <br> Company |
| :---: | :---: | :---: | :---: | :---: |
| Observed | 122 | 85 | 76 | 17 |

Step 1: State the hypotheses and identify the claım.
$H_{0}$ : The retired executives who returned to work are distributed as follows: 38\% are employed by another organization, $32 \%$ are self-employed, $23 \%$ are either freelancing or consulting, and 7\% have formed their own companies (claim).
$\left(H_{0}: p_{1}=.38, p_{2}=.32 p_{3}=.23 p_{4}=.07\right)$
$H_{1}$ : The distribution is not the same as stated in the null hypothesis.
$\left(H_{1}\right.$ : At least one of the percentages is not as stated.)

## Example 2: Retirees <br> Step 4: Make the decision.

Since $3.2939<6.251$, the decision is not to reject the null hypothesis.


Step 5: Summarize the results.
There is not enough evidence to reject the claim. It can be concluded that the percentages are not significantly different from those given in the null hypothesis.

Example 2: Retirees

|  | New <br> Company | Self- <br> Employed | Free- <br> lancing | Owns <br> Company |
| :---: | :---: | :---: | :---: | :---: |
| Observed | 122 | 85 | 76 | 17 |
| Expected | $.38(300)=$ | $.32(300)=$ | $.23(300)=$ | $.07(300)=$ |
|  | 114 | 96 | 69 | 21 |

Step 2: Find the critical value.

$$
\text { D.f. }=4-1=3 \text {, and } \alpha=0.10 . \mathrm{CV}=6.251 .
$$

Step 3: Compute the test value.

$$
\begin{aligned}
\chi^{2} & =\sum \frac{(O-E)^{2}}{E} \\
& =\frac{(122-114)^{2}}{114}+\frac{(85-96)^{2}}{96}+\frac{(76-69)^{2}}{69}+\frac{(17-21)^{2}}{21} \\
& =3.2939
\end{aligned}
$$

Bluman, Chapter 11



### 11.3 Tests Using Contingency Tables

- When data can be tabulated in table form in terms of frequencies, several types of hypotheses can be tested by using the chi-square test.
- The test of independence of variables is used to determine whether two variables are independent of or related to each other when a single sample is selected.
- The test of homogeneity of proportions is used to determine whether the proportions for a variable are equal when several samples are selected from different populations.

Example 11-3: ATM Usage
Step 4: Make the decision.
Reject the null hypothesis, since $23.184>13.277$.


Step 5: Summarize the results.
There is enough evidence to reject the claim that the proportion of people using the ATM is the same for all 5 days of the week.

## Test for Independence

- The chi-square goodness-of-fit test can be used to test the independence of two variables.
- The hypotheses are:
$\square H_{0}$ : There is no relationship between two variables.
$\square \boldsymbol{H}_{1}$ : There is a relationship between two variables.
- If the null hypothesis is rejected, there is some relationship between the variables.



## Test for Independence

The formula for the test for independence:

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

where
d.f. $=(R-1)(C-1)$
$O=$ observed frequency
$\boldsymbol{E}=\boldsymbol{\operatorname { e x p }}$ ected frequency $=\frac{(\text { row sum })(\text { column sum })}{\text { grand total }}$

## Example 5: College Education and Place of Residence

Step 1: State the hypotheses and identify the claim.
$H_{0}$ : A person's place of residence is independent of the number of years of college completed.
$H_{1}$ : A person's place of residence is dependent on the number of years of college completed (claim).
Step 2: Find the critical value.
The critical value is 9.488 , since the degrees of freedom are $(3-1)(3-1)=4$.

## Example 5: College Education and Place of Residence

A sociologist wishes to see whether the number of years of college a person has completed is related to her or his place of residence. A sample of 88 people is selected and classified as shown. At $\alpha=0.05$, can the sociologist conclude that a person's location is dependent on the number of years of college?

| Location | No <br> College | Four-Year <br> Degree | Advanced <br> Degree | Total |
| :---: | :---: | :---: | :---: | :---: |
| Urban | 15 | 12 | 8 | 35 |
| Suburban | 8 | 15 | 9 | 32 |
| Rural | 6 | 8 | 7 | 21 |
| Total | 29 | 35 | 24 | 88 |

## Example 5: College Education and Place of Residence

Compute the expected values.
$E=\frac{(\text { row sum })(\text { column sum })}{\text { grand total }} \quad E_{1,1}=\frac{(35)(29)}{88}=11.53$

| Location | No <br> College | Four-Year <br> Degree | Advanced <br> Degree | Total |
| :---: | :---: | :---: | :---: | :---: |
| Urban | 15 <br> $(11.53)$ | 12 <br> $(13.92)$ | 8 <br> $(9.55)$ | 35 |
| Suburba <br> n | 8 <br> $(10.55)$ | 15 <br> $(12.73)$ | 9 <br> $(8.73)$ | 32 |
| Rural | 6 <br> $(6.92)$ | 8 <br> $(8.35)$ | 7 <br> $(5.73)$ | 21 |
| Total | 29 | 35 | 24 | 88 |

## Example 5: College Education and Place of Residence

Step 4: Make the decision.
Do not reject the null hypothesis, since 3.01<9.488.


Step 5: Summarize the results.
A person's place of residence is independent of the number of years of college completed.

## Graphing Calculator

- Press $\mathbf{2}^{\text {nd }} \mathbf{x}^{-1}$ for MATRIX and move the cursor to edit, then press enter
- Enter the number of rows \& columns then enter
- Enter the values in the matrix as they appear in the contingency table
- Press STAT - TEST - C: $\chi^{2}$ - Test Make sure the observed matrix is $[\mathrm{A}]$ and the expected matrix is [B]
- Calculate, enter

Bluman, Chapter 11

## Example6: Alcohol and Gender

A researcher wishes to determine whether there is a relationship between the gender of an individual and the amount of alcohol consumed. A sample of 68 people is selected, and the following data are obtained. At $\alpha=0.10$, can the researcher conclude that alcohol consumption is related to gender?

|  | Alcohol Consumption |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Gender | Low | Moderate | High | Total |
| Male | 10 | 9 | 8 | 27 |
| Female | 13 | 16 | 12 | 41 |
| Total | 23 | 25 | 20 | 68 |

## Example 6: Alcohol and Gender

Step 1: State the hypotheses and identify the claim.
$H_{0}$ : The amount of alcohol that a person consumes is independent of the individual's gender.
$H_{1}$ : The amount of alcohol that a person consumes is dependent on the individual's gender (claim).

Step 2: Find the critical value.
The critical value is 9.488 , since the degrees of freedom are $(3-1)(3-1)=(2)(2)=4$.


Step 3: Compute the test value.

$$
\begin{aligned}
\chi^{2}= & \sum \frac{(O-E)^{2}}{E} \\
= & \frac{(10-9.13)^{2}}{9.13}+\frac{(9-9.93)^{2}}{9.93}+\frac{(8-7.94)^{2}}{7.94} \\
& +\frac{(13-13.87)^{2}}{13.87}+\frac{(16-15.07)^{2}}{15.07}+\frac{(12-12.06)^{2}}{12.06} \\
= & 0.283
\end{aligned}
$$

## Test for Homogeneity of <br> Proportions

- Homogeneity of proportions test is used when samples are selected from several different populations and the researcher is interested in determining whether the proportions of elements that have a common characteristic are the same for each population.


## Assumptions for Homogeneity of Proportions

1. The data are obtained from a random sample.
2. The expected frequency for each category must be 5 or more.

## Example 6: Alcohol and Gender

Step 4: Make the decision.
Do not reject the null hypothesis, since
$0.283<4.605$.


Step 5: Summarize the results.
There is not enough evidence to support the claim that the amount of alcohol a person consumes is dependent on the individual's gender.

Test for Homogeneity of Proportions

- The hypotheses are:
$H_{0}: p_{1}=p_{2}=p_{3}=\ldots=p_{n}$
$\square \boldsymbol{H}_{1}$ : At least one proportion is different from the others.
- When the null hypothesis is rejected, it can be assumed that the proportions are not all equal.


## Example 7: Lost Luggage

A researcher selected 100 passengers from each of 3 airlines and asked them if the airline had lost their luggage on their last flight. The data are shown in the table. At $\alpha=$ 0.05 , test the claim that the proportion of passengers from each airline who lost luggage on the flight is the same for each airline.

|  | Airline 1 | Airline 2 | Airline 3 | Total |
| :---: | :---: | :---: | :---: | :---: |
| Yes | 10 | 7 | 4 | 21 |
| No | 90 | 93 | 96 | 279 |
| Total | 100 | 100 | 100 | 300 |

## Graphing Calculator

- Press $\mathbf{2}^{\text {nd }} \mathbf{x}^{-1}$ for MATRIX and move the cursor to edit, then press enter
- Enter the number of rows \& columns then enter
- Enter the values in the matrix as they appear in the contingency table
- Press STAT - TEST - C: $\chi^{2}$ - Test Make sure the observed matrix is $[\mathrm{A}]$ and the expected matrix is [B]
- Calculate, enter


## Example 7: Lost Luggage

Compute the expected values.
$E=\frac{(\text { row sum })(\text { column sum })}{\text { grand total }} \quad E_{1,1}=\frac{(21)(100)}{300}=7$

|  | Airline 1 | Airline 2 | Airline 3 | Total |
| :---: | :---: | :---: | :---: | :---: |
| Yes | 10 <br> $(7)$ | 7 <br> $(7)$ | 4 <br> $(7)$ | 21 |
| No | 90 <br> $(93)$ | 93 <br> $(93)$ | 96 <br> $(93)$ | 279 |
| Total | 100 | 100 | 100 | 300 |

