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Decide whether each function is one-to-one.

4.1 Example 1 Deciding Whether Functions are One-to-One 
(page 403)

(a) f(x) = –3x + 7

We must show that f(a) = f(b) leads to the result a = b. 

f(x) = –3x + 7 is one-to-one.
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Decide whether each function is one-to-one.

4.1 Example 1 Deciding Whether Functions are One-to-One 
(cont.)

(b) 

is  not one-to-one.

If we choose a = 7 and b = –7, then 7 ≠ –7, but 

and

So, even though 7 ≠ –7, f(7) = f(–7) = 0.
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Determine whether the graph is the graph of a one-

to-one function.

4.1 Example 2(a) Using the Horizontal Line Test (page 404)

Since every horizontal line will intersect the graph at 

exactly one point, the function is one-to-one.
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Determine whether the graph is the graph of a one-

to-one function.

4.1 Example 2(a) Using the Horizontal Line Test (page 404)

Since the horizontal line will intersect the graph at 

more than one point, the function is not one-to-one.
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4.1 Example 3 Deciding Whether Two Functions are 
Inverses (page 405)

Let                      and                         Is g the inverse 

function of f ?  

is a nonhorizontal linear function.

Thus, f is one-to-one, and it has an inverse.

Now find 

Since                                      , g is not the inverse 

of f. 
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4.1 Example 4(a) Finding Inverses of One-to-One Functions 
(page 407)

Find the inverse of the function 

F = {(–2, –8), (–1, –1), (0, 0), (1, 1), (2, 8) .

F is one-to-one and has an inverse since each 

x-value corresponds to only one y-value and each

y-value corresponds to only one x-value.

Interchange the x- and y-values in each ordered 

pair in order to find the inverse function.
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4.1 Example 4(b) Finding Inverses of One-to-One Functions 
(page 407)

Find the inverse of the function 

G = {(–2, 5), (–1, 2), (0, 1), (1, 2), (2, 5) .

Each x-value in G corresponds to just one y-value.

However, the y-value 5 corresponds to two x-values, 

–2 and 2.

Thus, G is not one-to-one and does not have an 

inverse.
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4.1 Example 4(c) Finding Inverses of One-to-One Functions 
(page 407)

Find the inverse of the function h

defined by the table.

Each x-value in h corresponds 

to just one y-value.

However, the y-value 33 

corresponds to two x-values, 

2002 and 2005.

Thus, h is not one-to-one and does not have an 

inverse.
Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 4-12

4.1 Example 5(a) Finding Equations of Inverses (page 407)

Is               a one-to-one function? If so, find the 

equation of its inverse.

is not a one-to-one function and does not 

have an inverse.

The horizontal line test 

confirms this.
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Is g(x) = 4x – 7 a one-to-one function? If so, find 

the equation of its inverse.

4.1 Example 5(b) Finding Equations of Inverses (page 407)

The graph of g is a 

nonhorizontal line, so 

by the horizontal line 

test, g is a one-to-one 

function.
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4.1 Example 5(b) Finding Equations of Inverses (cont.)

y = f(x)

Step 1: Interchange 

x and y.

Step 2: Solve for y.

Step 3: Replace y 

with
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Is                      a one-to-one function? If so, find 

the equation of its inverse.

4.1 Example 5(c) Finding Equations of Inverses (page 407)

A cubing function is 

one-to-one.
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4.1 Example 5(c) Finding Equations of Inverses (cont.)

y = f(x)

Step 1: Interchange 

x and y.

Step 2: Solve for y.

Step 3: Replace y 

with
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Determine whether functions f and g graphed are 

inverses of each other.

4.1 Example 6 Graphing the Inverse (page 409)

f and g graphed are not inverses because the 

graphs are not reflections across the line y = x.
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4.1 Example 7 Finding the Inverse of a Function with a 
Restricted Domain (page 409)

Because the domain is restricted, 

the function is one-to-one and 

has an inverse.
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4.1 Example 7 Finding the Inverse of a Function with a 
Restricted Domain (cont.)

y = f(x)

Step 1: Interchange 

x and y.

Step 2: Solve for y. 

The domain of f is 

the range of 

Step 3: Replace y 

with
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4.1 Example 7 Finding the Inverse of a Function with a 
Restricted Domain (cont.)

f and f -1 are mirror images with respect to the line 

y = x.
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4.1 Example 8 Using Functions to Encode and Decode a 
Message (page 410)

The function defined by f(x) = 3x – 1 was used to 

encode a message as 

26  35  26  32  14  38  2  59  23 

Find the inverse functions and decode the 

message. Use the values in the chart below.
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4.1 Example 8 Using Functions to Encode and Decode a 
Message (cont.)

The graph of f(x) = 3x – 1 is a nonhorizontal line, 

so by the horizontal line test, f is a one-to-one 

function and has an inverse.

y = f(x)

Step 1: Interchange 

x and y.

Step 2: Solve for y. 

Step 3: Replace y 

with
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4.1 Example 8 Using Functions to Encode and Decode a 
Message (cont.)

Use the inverse function                          to decode 

the message. 

26 35 26

32 14 38

2 59 23

I L I K E M A T H
Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 4-24

Exponential Functions4.2
Exponents and Properties ▪ Exponential Functions ▪ Exponential 
Equations ▪ Compound Interest ▪ The Number e and Continuous 
Compounding ▪ Exponential Models and Curve Fitting
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If               , find each of the following. 

4.2 Example 1 Evaluating an Exponential Expression
(page 417)

(a) (b)

(c)

(d)
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4.2 Example 2 Graphing an Exponential Function (page 419)

so the y-intercept is 1. The x-axis is a 

horizontal asymptote.

f has domain             and range          and is one-to-one.           
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4.2 Example 2 Graphing an Exponential Function (cont.)

Create a table of values.
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4.2 Example 3(a) Graphing Reflections and Translations 
(page 420)

Give the domain and range.

The graph of                  is 

obtained by reflecting the 

graph of                across 

the x-axis. 

Domain:                 

Range:  
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4.2 Example 3(b) Graphing Reflections and Translations 
(page 420)

Give the domain and range.

The graph of                   is 

obtained by translating the 

graph of                two 

units to the right.

Domain:                 

Range:  
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4.2 Example 3(c) Graphing Reflections and Translations 
(page 420)

Give the domain and range.

Domain:                 

Range:  

The graph of                     

is obtained by translating 

the graph of                two 

units down.
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4.2 Example 4 Using a Property of Exponents to Solve an 
Equation (page 420)

Definition of 
negative exponent

Set exponents 
equal.

Solution set: {–3}

Write 125 as a 
power of 5.
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4.2 Example 5 Using a Property of Exponents to Solve an 
Equation (page 421)

Solution set: {7}

Write 9 as a power 

of 3.

Set exponents equal.

Solve for x.
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4.2 Example 6 Using a Property of Exponents to Solve an 
Equation (page 421)

Raise both sides to 

the 2/5 power.

Write 243 as a power 

of 5.

Simplify.
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4.2 Example 6 Using a Property of Exponents to Solve an 
Equation (cont.)

It is necessary to check all proposed solutions in 
the original equation when both sides have been 
raised to a power.

Check b = 9.

Solution set: {9}
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4.2 Example 7(a) Using the Compound Interest Formula 
(page 422)

Suppose $2500 is deposited in an account paying 6% 

per year compounded semiannually (twice per year). 

Find the amount in the account after 10 years with no 

withdrawals.

P = 2500, r = .06, n = 2, 

t = 10

Compound interest formula

Round to the nearest 

hundredth.

There is $4515.28 in the account after 10 years.
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4.2 Example 7(b) Using the Compound Interest Formula 
(page 422)

How much interest is earned over the 10-year period?

The interest earned over the 10 years is 

$4515.28 – $2500 = $2015.28
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4.2 Example 8(a) Finding Present Value (page 423)

Leah must pay a lump sum of $15,000 in 8 years. What 

amount deposited today at 4.8% compounded annually 

will give $15,000 in 8 years?

Compound interest formula

If Leah deposits $10,308.63 now, she will have 

$15,000 when she needs it.

A = 15,000, r = .048, n = 1, 

t = 8

Simplify, then solve for P.

Round to the nearest 

hundredth.
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4.2 Example 8(b) Finding Present Value (page 423)

If only $10,000 is available to deposit now, what annual 

interest rate is necessary for the money to increase to 

$15,000 in 8 years?

Compound interest formula

An interest rate of about 5.20% will produce 

enough interest to increase the $10,000 to 

$15,000 by the end of 8 years.

A = 15,000, P = 10,000, 

n = 1, t = 8

Simplify, then solve for r.

Use a calculator.
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4.2 Example 9 Solving a Continuous Compounding Problem 
(page 424)

Suppose $8000 is deposited in an account paying 5% 

interest compounded continuously for 6 years. Find the 

total amount on deposit at the end of 6 years.

There will be about $10,798.87 in the account at 

the end of 6 years.

Continuous compounding 

formula

P = 8000, r = .05, t = 6

Round to the nearest 

hundredth.
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4.2 Example 10 Comparing Interest Earned as 
Compounding is More Frequent (page 425)

Suppose $2500 is invested at 6% in an account for 10 

years. Find the amounts in the account at the end of 10 

years if the interest is compounded quarterly, monthly, 

daily, and continuously.
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4.2 Example 11(a) Using Data to Model Exponential Growth 
(page 426)

If current trends of burning 

fossil fuels and deforestation 

continue, then future amounts 

of atmospheric carbon dioxide 

in parts per million (ppm) will 

increase as shown in the table. 

What will be the atmospheric carbon dioxide level in 2015?

The data can be modeled by 

the function
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4.2 Example 11(b) Using Data to Model Exponential Growth 
(page 426)

Use a graph of this model to estimate when the carbon 

dioxide level will be double the level that it was in 2000. 

In 2000, the carbon dioxide level was 375 ppm, so we want 

to know when the carbon dioxide level will be 750 ppm.  

The carbon dioxide level will be double the level in 2000, 

750 ppm, by 2113.
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Logarithmic Functions4.3
Logarithms ▪ Logarithmic Equations ▪ Properties of Logarithms
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Solve: 

4.3 Example 1 Solving Logarithmic Equations (page 433)

(a) (b)

(c)
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4.3 Example 2(a) Graphing Logarithmic Functions (page 436)

Use the exponential form               to find ordered 

pairs. The ordered pairs for                   are found by

interchanging the x- and y-value in the ordered pairs.
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4.3 Example 2(a) Graphing Logarithmic Functions (cont.)

The graph of                       is the reflection of the 

graph of                   across the line y = x.

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 4-47

4.3 Example 2(b) Graphing Logarithmic Functions (page 436)

Use the exponential form           to find ordered pairs. 

The ordered pairs for                 are found by 

interchanging the x- and y-value in the ordered pairs.
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4.3 Example 2(b) Graphing Logarithmic Functions (cont.)

The graph of                       is the reflection of the 

graph of                across the line y = x.
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4.3 Example 3(a) Graphing Translated Logarithmic 
Functions (page 437)

The graph of                             is obtained by 

translating the graph of                      two units to the 

left. It has a vertical asymptote at x = –2.
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4.3 Example 3(b) Graphing Translated Logarithmic 
Functions (page 437)

The graph of                              is obtained by 

translating the graph of                      two units up. It 

has a vertical asymptote at x = 0.
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4.3 Example 4 Using the Properties of Logarithms (page 438)

Rewrite each expression. Assume all variables 

represent  positive real numbers, with a ≠ 1 and b ≠ 1.

(a)

(b)

(c)

(d)
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4.3 Example 4 Using the Properties of Logarithms (cont.)

Rewrite each expression. Assume all variables 

represent  positive real numbers, with a ≠ 1 and b ≠ 1.

(e)

(f)
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4.3 Example 5 Using the Properties of Logarithms (page 439)

Write each expression as a single logarithm with 

coefficient 1. Assume all variables represent positive 

real numbers, with a ≠ 1 and b ≠ 1.

(a)

(b)

(c)
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4.3 Example 6 Using the Properties of Logarithms (page 440)

Assume that log107 = .8451. Find each logarithm.

(a)

(b)
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Evaluating Logarithms and the 
Change-of-Base Theorem

4.4
Common Logarithms ▪ Applications and Modeling with Common
Logarithms ▪ Applications and Modeling with Natural Logarithms
▪ Logarithms with Other Bases
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Use the change-of-base theorem to find an approximation 

to four decimal places for each logarithm.

4.4 Example 6 Using the Change-of-Base Theorem (page 451)

(a)

(b)

(a) (b)
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Find the pH of a solution with  

4.4 Example 1(a) Finding pH (page 448)

Substitute.

Product property

log 10–8 = –8

pH ≈ 7.2
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Find the hydronium ion concentration of a solution 

with pH = 7.1.

4.4 Example 1(b) Finding pH (page 448)

Substitute.

Multiply by –1.

Write in 

exponential form.

Use a calculator.

7.1

-7.1

-7.1
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Wetlands are 

classified as shown in 

the table.  

4.4 Example 2 Using pH in an Application (page 448)

The hydronium ion concentration of a water sample 

from a wetland is 4.5 x 10–3. Classify this wetland.

The wetland is a bog.

≤
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Find the decibel rating of a sound with intensity 

10,000,000I0.

4.4 Example 3 Measuring the Loudness of Sound (page 449)

The sound has a decibel rating of 70.

Let I = 10,000,000I0. 

log 10,000,000 

= log 107 = 7. 
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By measuring the amounts of potassium 40, K, and 

argon 40, A, in a rock, the age t of the rock in years 

can be found with the formula

4.4 Example 4(a) Measuring the Age of Rocks (page 450)

How old is a rock sample in which A = K?

Since A = K, 

The rock sample is about 4.06 billion years old.
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4.4 Example 4(b) Measuring the Age of Rocks (page 450)

How old is a rock sample in which 

The rock sample is about 2.38 billion years old.
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4.4 Example 5 Modeling Global Temperature Increase
(page 450)

Solar radiation trapped by carbon dioxide in the 

atmosphere (called radiative forcing) is measured in watts 

per square meter. Radiative forcing R can be modeled by 

where C0 is the preindustrial amount of carbon dioxide, C

is the current carbon dioxide level, and k is a constant.

(a) Suppose that C = 2C0 and k = 14. Find the radiative 

forcing under these conditions.
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4.4 Example 5 Modeling Global Temperature Increase (cont.)

(b) The average global temperature increase T (in °F) is 

given by T(R) = 1.03R. Find the average global 

temperature increase to the nearest degree 

Fahrenheit under the same conditions.

The average global temperature increase will be about 

10°F.
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One measure of the diversity of the species in an 

ecological community is modeled by 

4.4 Example 7 Modeling Diversity of Species (page 452)

where P1, P2, …, Pn  are the proportions of a sample 

that belong to each of n species found in the sample.

(Source: Ludwig, J., and J. Reynolds, Statistical Ecology: A Primer on 

Methods and Computing, New York, Wiley, 1988, p. 92.)
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4.4 Example 7 Modeling Diversity of Species (cont.)

Find the measure of diversity in a community with two 

species where there are 60 of one species and 140 of 

the other.

There are 60 + 140 = 200 members in the community, 

so                       and  

Change-of-base 

theorem
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Exponential and Logarithmic 
Equations

4.5
Exponential Equations ▪ Logarithmic Equations ▪ Applications 
and Modeling

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 4-68

Solve 8x = 21. Give the solution to the nearest 

thousandth. 

4.5 Example 1 Solving an Exponential Equation (page 458)

Property of logarithms

Power property

Divide by ln 8.

Solution set: {1.464} 
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Solve 52x–3 = 8x+1. Give the solution to the nearest 

thousandth. 

4.5 Example 2 Solving an Exponential Equation (page 459)

Solution set: {6.062} 

Property of logarithms

Power property

Distributive property

Write the terms with x
on one side.

Factor.
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Solve              . Give the solution to the nearest 

thousandth. 

4.5 Example 3(a) Solving Base e Exponential Equations
(page 460)

Solution set: {±3.912} 

Property of logarithms

ln e|x| = |x|
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Solve                       . Give the solution to the nearest 

thousandth.

4.5 Example 3(b) Solving Base e Exponential Equations
(page 460)

Solution set: {.722} 

am ∙ an = amn

Divide by e. 

Take natural logarithms on 
both sides.

Solve for x. 
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Solve log(2x + 1) + log x = log(x + 8). Give the exact 

value(s) of the solution(s). 

4.5 Example 4 Solving an Logarithmic Equation (page 460)

Solution set: {2} 

Product property

Distributive property

Property of logarithms

Solve the quadratic 

equation.

The negative solution is not in the domain of log x in the 

original equation, so the only valid solution is x = 2. 
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Solve                                              . Give the exact 

value(s) of the solution(s). 

4.5 Example 5 Solving a Logarithmic Equation (page 461)

Product property

Subtract 8.

Property of logarithms

Multiply.

Use the quadratic formula with a = 2, b = –11, and 

c = 7 to solve for x.
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4.5 Example 5 Solving a Logarithmic Equation (cont.)

The negative solution makes 2x – 5 in the original 

equation negative, so reject that solution.

Solution set: 
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Solve                                    . Give the exact value(s) 

of the solution(s). 

4.5 Example 6 Solving a Logarithmic Equation (page 461)

Solution set: {5}

eln x = x

Quotient property

Property of logarithms

Multiply by x – 4.

Solve for x.

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 4-76

The equation                       can be used to describe 

Newton’s law of cooling. Solve this equation for k. 

4.5 Example 7 Applying an Exponential Equation to the 
Strength of a Habit (page 462)

Take the natural logarithm 
of both sides.

ln e–kt = –kt
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The table gives U.S. coal 

consumption (in quadrillions of 

British thermal units, or quads) for 

several years. The data can be 

modeled by 

4.5 Example 8 Modeling Coal Consumption in the U.S.
(page 463)

where t is the number of years 

after 1900, and f(t) is in quads.
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(a) Approximately what amount of coal was consumed in 

the United States in 1998? How does this figure 

compare to the actual figure of 21.66 quads?

4.5 Example 8 Modeling Coal Consumption in the U.S.
(cont.)

The year 1998 is represented by t = 1998 – 1900 = 98.

This is very close to the actual figure 21.66 quads.
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(b) If this trend continues, approximately when will annual 

consumption reach 28 quads?

4.5 Example 8 Modeling Coal Consumption in the U.S.
(cont.)

Let f(t) = 28, and solve for t.

Annual consumption will reach 28 quads in 2026.

Write in exponential form.

Add 1900 to 126 to get 2026.
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Applications and Models of 
Exponential Growth and Decay

4.6
The Exponential Growth or Decay Function ▪ Growth Function 
Models ▪ Decay Function Models
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The table shows the growth of 

atmospheric carbon dioxide over 

time. 

4.6 Example 1 Determining an Exponential Function to 
Model the Increase of Carbon Dioxide 

(page 469)

(a) Find an exponential model 

using the data for 2000 and 

2175. Let the year 2000 

correspond to t = 0.

The equation will take the form                 We must find 

the values of y0 and k.
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The year 2000 corresponds to t = 0, so the year 2175 

corresponds t = 175.

4.6 Example 1 Determining an Exponential Function to 
Model the Increase of Carbon Dioxide (cont.)

Since y0 is the initial amount, y0 =375 when t = 0. Thus, 

the equation is 

When t = 175, y = 1090. Substitute these values into the 

equation, and solve for k.

The equation of the model is 
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(b) Use the model to estimate when future levels of 

carbon dioxide will triple from the 1951 level of 280 

ppm.

4.6 Example 1 Determining an Exponential Function to 
Model the Increase of Carbon Dioxide (cont.)

Let y = 3(280) = 840. Then solve for t.

The carbon dioxide level will triple from the 1951 level 

in 2132. 

Since t = 0 corresponds to the year 2000, t = 132 

corresponds to the year 2132.
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How long will it take for the money in an account that is 

compounded continuously at 5.75% to double?

4.6 Example 2 Finding Doubling Time for Money (page 470)

Use the continuously compounding formula               with 

A = 2P and r = .0575 to solve for t.

It will take about 12 years for the money to double.

Take the natural 

logarithm of both sides.
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The projected world population (in billions of people) t

years after 2000, is given by the function 

4.6 Example 3 Determining an Exponential Function to 
Model Population Growth (page 471)

The year 2015 corresponds to t = 15.

The world population will be about 7.344 billion at the end 

of 2015.

(a) What will the world population be at the end of 2015?
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4.6 Example 3 Determining an Exponential Function to 
Model Population Growth (cont.)

The world population reach 8 billion during the year 2021.

(b) In what year will the world population reach 8 billion?

Let               and solve for t.

Since t = 0 corresponds to the year 2000, add 21 to 2000.

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 4-87

If 800 grams of a radioactive substance are present 

initially, and 2.5 years later only 400 grams remain, how 

much of the substance will be present after 4 years? 

4.6 Example 4 Determining an Exponential Function to 
Model Radioactive Decay (page 471)

The equation will take the form                 Let y = 800 

and t = 0, then solve for y0.

The equation becomes                    Now, let y = 400 and 

t = 2.5, then solve for k.

The exponential equation is
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Letting t = 4, we have 

4.6 Example 4 Determining an Exponential Function to 
Model Radioactive Decay (cont.)

There will be about 264 grams of the substance left after 

4 years.
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Suppose that the skeleton of a woman who lived in the 

Classical Greek period was discovered in 2005. Carbon 

14 testing at that time determined that the skeleton 

contained ¾ of the carbon 14 of a living woman of the 

same size. Estimate the year in which the Greek woman 

died.

4.6 Example 5 Solving a Carbon Dating Problem (page 472)

The amount of radiocarbon present after t years is given 

by 
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Let                and solve for t.

4.6 Example 5 Solving a Carbon Dating Problem (cont.)

The woman died approximately 2366 years before 2005, 

in 361 B.C.
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Newton’s law of cooling says that the rate at which a 

body cools is proportional to the difference C in 

temperature between the body and the environment 

around it. The temperature of the body at time t in 

appropriate units after being introduced into an 

environment having constant temperature T0 is

4.6 Example 6 Modeling Newton’s Law of Cooling (page 474)

where C and k are constants.

Newton’s law of cooling also applies to warming.
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Mollie took a leg of lamb out of her refrigerator, which is 

set at 34°F, and placed it in her oven, which she had 

preheated to 350°F. After 1 hour, her meat thermometer 

registered 70°F.

4.6 Example 6 Modeling Newton’s Law of Cooling (cont.)

(a) Write an equation to model the data.

From the data, when t = 0, f(0) = 34 and T0 = 350.

When t = 1, f(1) = 70.

Solve for C: 
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Now solve for k:

4.6 Example 6 Modeling Newton’s Law of Cooling (cont.)

The equation is 
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4.6 Example 6 Modeling Newton’s Law of Cooling (cont.)

(b) Find the temperature 90 minutes after the leg of lamb 

was placed in the oven.

Time t is measured in hours, so convert 90 minutes 

to 1.5 hours.

After 90 minutes (1.5 hours), the temperature is 

about 86.5°F.
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4.6 Example 6 Modeling Newton’s Law of Cooling (cont.)

(c) Mollie wants to serve the leg of lamb rare, which 

requires an internal temperature of 145°F. What is the 

total amount of time it will take to cook the leg of lamb?

The meat temperature will be 145°F after about 

3.576 hours or about 3 hours 35 minutes.

Let f(t) = 145, then solve for t.


