For the following 6 problems, solve one by each method - elimination, substitution, Cramer's Rule, and the inverse of the coefficient matrix. The remaining problems may be solved using any method.

1. $x+7 y=-38$
$7 x+7 y=-14$
2. $x+6 y=-2$
$-3 x+7 y=6$
3. $x-2 y=-2$
$5 x-y=-10$
4. $6 x+4 y=-4$
$3 x+y=-7$
5. $-3 x-5 y=19$
$-6 x-10 y=17$
6. $x+4 y=-25$
$x-y=-10$
Solve.
7. Tickets for the school play cost $\$ 6$ for students and $\$ 9$ for adults. On opening night, all 360 seats were filled and the box office revenues were $\$ 2610$. How many student and how many adult tickets were sold?
8. In a chemistry class, 3 liters of a 4% silver iodide solution must be mixed with a 10% solution to get a 6% solution. How many liters of the 10% solution are needed?
9. Find the determinant of the matrix: $\left[\begin{array}{rr}-1 & 2 \\ 2 & 3\end{array}\right]$
10. Let $B=\left[\begin{array}{llll}-1 & 4 & 7 & -3\end{array}\right]$ Find $-4 B$
11. Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$ and $B=\left[\begin{array}{rr}0 & 4 \\ -1 & 6\end{array}\right]$ Find $2 A+B$
12. Use the inverse of the coefficient matrix to solve this system of equations.
$5 x+22 y=13$
$2 x+9 y=6$
13. Find the product, if possible. $\left[\begin{array}{rrr}-4 & -4 & 9 \\ -5 & 6 & -6\end{array}\right] \cdot\left[\begin{array}{r}-1 \\ -8 \\ 4\end{array}\right]$
14. Graph the system of inequalities.

$$
\begin{array}{r}
2 x+y \leq 4 \\
y-1 \leq 0
\end{array}
$$

15. A 4-H member raises only geese and pigs. She wants to raise no more than 16 animals, including no more than 10 geese. She spends $\$ 5$ to raise a goose and $\$ 15$ to raise a pig, and she has $\$ 180$ available for this project. Each goose produces $\$ 6$ in profit, and each pig produces $\$ 20$ in profit. How many of each animal should she raise to maximize her profit? What is her maximum profit?

16. Graph the system of inequalities and find the coordinates of the vertices.
$x+2 y \leq 2$
$x+y \geq 0$
17. Find A^{-1} if it exists. $A=\left[\begin{array}{cc}-2 & -3 \\ -3 & 9\end{array}\right]$

18. Find A^{-1} if it exists. $A=\left[\begin{array}{rr}2 & -5 \\ 1 & 4\end{array}\right]$

