

5.1 Systems of Linear Equations

5.2 Matrix Solution of Linear Systems

5.3 Determinant Solution of Linear Systems

5.4 Partial Fractions

5.5 Nonlinear Systems of Equations

5.1 Systems of Linear Equations

Linear Systems - Substitution Method - Elimination Method Special Systems * Applying Systems of Equations - Solving Linear Systems with Three Unknowns (Variables) • Using Systems of Equations to Model Data
5.1 Example 1 Solving a System by Substitution (cont.)

The solution of the system is $(5,2)$. Check this solution in both equations (1) and (2).

$4 x-3 y=14$	$x-2 y=1$	(2)
$4(5)-3(2)=14$?	$5-2(2)=1$?
20-6-14	$\begin{aligned} 5-4 & =1 \\ 1 & =1\end{aligned}$	

Solution set: $\{(5,2)\}$

5.1 Example 1 Solving a System by Substitution (page 495)

Solve the system.

$$
\begin{aligned}
4 x-3 y & =14 \\
x-2 y & =1
\end{aligned}
$$

Solve equation (2) for x : $x=1+2 y$
Replace x in equation (1) with $1+2 y$, then solve for y :

$$
\begin{aligned}
4(1+2 y)-3 y & =14 \\
4+8 y-3 y & =14 \text { Distributive property } \\
5 y & =10 \\
y & =2
\end{aligned}
$$

Replace y in equation (2) with 2, then solve for y :

$$
x-2(2)=1 \Rightarrow x-4=1 \Rightarrow x=5
$$

Copyight © 2008 Pearson Addison-Wesley. All rights reserved. $\quad 5$

5.1 Example 1 Solving a System by Substitution (cont.)

To solve the system graphically, solve both equations for y :

$$
\begin{aligned}
4 x-3 y & =14 \Rightarrow Y_{1}=\frac{4 X-14}{3} \\
x-2 y & =1 \Rightarrow Y_{2}=\frac{X-1}{2}
\end{aligned}
$$

Graph both Y_{1} and Y_{2} in the standard window to find that their point of intersection is $(5,2)$.

5.1 Example 2 Solving a System by Elimination (page 496)

Solve the system.

$$
\begin{align*}
& 2 x+3 y=-1 \\
& 3 x-2 y=18 \tag{2}
\end{align*}
$$

Multiply both sides of equation (1) by 2, and then multiply both sides of equation (2) by 3 .

$$
\begin{align*}
& 4 x+6 y=-2 \tag{3}\\
& 9 x-6 y=54 \tag{4}
\end{align*}
$$

Add equations (3) and (4), then solve for x.

$$
\begin{aligned}
& 4 x+6 y=-2 \\
& 9 x-6 y=54 \\
& 13 x \quad=52
\end{aligned} \Rightarrow x=4
$$

Example 2 Solving a System by Elimination (cont.)

$$
\begin{align*}
& 2 x+3 y=-1 \\
& 2(4)+3(-3)=-1 \quad \text { ? } \\
& 8-9=-1 \\
& -1=-1 \text { True } \\
& \begin{aligned}
3 x-2 y & =18 \quad(2) \\
3(4)-2(-3) & =18 \quad ? \\
12-(-6) & =18 \\
18 & =18 \text { True }
\end{aligned} \\
& -1=-1 \text { True } \\
& 18=18 \text { True }
\end{align*}
$$

Solution set: $\{(4,-3)\}$

Example 2 Solving a System by Elimination (cont.)

The graph confirms that the solution set is $\{(4,-3)\}$.

5.1 Example 3 Solving an Inconsistent System (cont.)

The graphs of the equations are parallel and never intersect.

5.1 Example 2 Solving a System by Elimination (cont.)

Substitute 4 for x equation (1), then solve for y.

$$
\begin{align*}
2 x+3 y & =-1 \tag{1}\\
2(4)+3 y & =-1 \\
8+3 y & =-1 \\
3 y & =-9 \\
y & =-3
\end{align*}
$$

The solution of the system is $(4,-3)$. Check this
solution in both equations (1) and (2).

Solution set: \varnothing

5.1 Example 4 Solving a System with Infinitely Many Solutions (page 497)

Solve the system.

$$
\begin{align*}
-9 x+3 y & =-24 \\
3 x-y & =8 \tag{2}
\end{align*}
$$

Multiply both sides of equation (2) by 3 , then add the resulting equation to equation (1).

$$
\begin{aligned}
-9 x+3 y & =-24 \\
9 x-3 y & =24 \\
\hline 0 & =0
\end{aligned}
$$

The result indicates that the equations of the original system are equivalent. Any ordered pair that satisfies either equation will satisfy the system.
5.1 Example 4 Solving a System with Infinitely Many Solutions (cont.)

From equation (2), we have

$$
3 x-y=8 \Rightarrow y=3 x-8
$$

The solution set (with x arbitrary) is $\{(x, 3 x-8)\}$.
From equation (2), we have

$$
3 x-y=8 \Rightarrow 3 x=y+8 \Rightarrow x=\frac{1}{3} y+\frac{8}{3}
$$

The solution set (with y arbitrary) is $\left\{\left(\frac{1}{3} y+\frac{8}{3}, y\right)\right\}$.

5.1 Example 5 Using a Linear System to Solve an Application (page 498)

In the 2006 Winter Olympics in Torino, Italy, the two countries winning the most medals were Germany and the United States. The total number of medals won by these two countries was 54 , with Germany winning 4 more medals than the United States. How many medals were won by each country? (Source: www.infoplease.com

Let $x=$ the number of medals won by the U.S. Let $y=$ the number of medals won by Germany. Then, we have the system:

$$
\begin{align*}
x+y & =54 \tag{1}\\
y & =x+4
\end{align*}
$$

5.1 Example 5 Using a Linear System to Solve an Application (cont.)

Verify that $(25,29)$ checks in the words of the original problem.

The total number of medals won was $25+29=54$.

29 is 4 more than 25

Substitute 25 for x in equation (2), then solve for y.

$$
y=25+4=29
$$

The U.S. won 25 medals and Germany won 29 medals

5.1 Example 6 Solving a System of Three Equations with

 Three Variables (page 500)Solve the system

$$
\begin{align*}
3 x+4 y-2 z & =14 \\
2 x+y+2 z & =-9 \\
x-y+z & =-9 \tag{3}
\end{align*}
$$

Eliminate y by adding equations (2) and (3) to obtain

$$
3 x+3 z=-18 \Rightarrow x+z=-6
$$

To eliminate y from another pair of equations, multiply equation (3) by 4 and add the result to equation (1).

$$
\begin{align*}
& 3 x+4 y-2 z=14 \quad \text { (1) } \\
& 4 x-4 y+4 z=-36 \\
& \hline 7 x+\quad 2 z=-22
\end{aligned} \quad \begin{aligned}
& x-y+z=-9 \tag{5}
\end{align*}
$$

5.1 Example 6 Solving a System of Three Equations with Three Variables (cont.)

Substitute -2 for x and -2 for z in equation (3) to solve for y.

$$
\begin{aligned}
x-y+z & =-9 \quad(3) \\
-2-y-4 & =-9 \Rightarrow y=3 \\
x=-2, y & =3, z=-4 .
\end{aligned}
$$

Verify that $(-2,3,-4)$ satisfies all three equations in the original system.

$$
\begin{aligned}
3 x+4 y-2 z & =14 \quad(1) \\
3(-2)+4(3)-2(-4) & =14 \quad ? \\
-6+12+8 & =14 \\
14 & =14 \quad \text { True }
\end{aligned}
$$

5.1 Example 7 Solving a System of Two Equations with Three Variables (page 501)

Solve the system. Write the system with z arbitrary.

$$
\begin{align*}
& 3 x+y-2 z=-7 \\
& 5 x+2 y+z=-6 \tag{2}
\end{align*}
$$

Multiply equation (1) by -2 , then add the result to equation (1) to eliminate y.

$$
\begin{align*}
-6 x-2 y+4 z & =14 \\
5 x+2 y+z & =-6 \tag{3}\\
\hline-x+\quad 5 z & =8
\end{align*}
$$

Now solve equation (3) for x.

$$
-x+5 z=8 \Rightarrow-x=-5 z+8 \Rightarrow x=5 z-8
$$

5.1 Example 6 Solving a System of Three Equations with

 Three Variables (cont.)Solve the system consisting of equations (4) and (5) by multiplying equation (4) by -2 and then adding the result to equation (5) to solve for x.

$$
\begin{aligned}
-2 x-2 z & =12 \\
7 x+2 z & =-22 \\
\hline 5 x \quad & =-10
\end{aligned} \Rightarrow x=-2=-6
$$

Substitute -2 for x in equation (4) to solve for z.

$$
-2+z=-6 \Rightarrow z=-4
$$

$$
\begin{aligned}
& \text { 5.1 Example } 6 \text { Solving a System of Three Equations with } \\
& \text { Three Variables (cont.) } \\
& \begin{aligned}
2 x+y+2 z & =-9 \quad(2) \\
2(-2)+3+2(-4) & =-9 \quad ? \\
-4+3-8 & =-9 \\
-9 & =-9 \quad \text { True }
\end{aligned} \\
& x-y+z=-9 \\
& -2-3+(-4)=-9 \quad \text { ? } \\
& -9=-9 \quad \text { True } \\
& \text { Solution set:\{(-2, 3, -4)\} }
\end{aligned}
$$

5.1 Example 7 Solving a System of Two Equations with

 Three Variables (cont.)Substitute $5 z-8$ for x in equation (2), then solve for y.

$$
\begin{aligned}
5(5 z-8)+2 y+z & =-6 \\
25 z-40+2 y+z & =-6 \\
2 y+26 z & =34 \\
2 y & =-26 z+34 \\
y & =-13 z+17
\end{aligned}
$$

With z arbitrary, the solution set is $\{(5 z-8,-13 z+17, z)\}$.

5.1 Example 8 Using Curve Fitting to Find an Equation Through Three Points (page 502)

Find the equation of the parabola $y=a x^{2}+b x+c$ that passes through the points $(-5,7),(-1,-2)$, and $(3,5)$.

The three points must satisfy the equation. Substitute each ordered pair into the equation to obtain a system of equations.

$$
\begin{align*}
& 7=a(-5)^{2}+b(-5)+c \Rightarrow 25 a-5 b+c=7 \tag{1}\\
& -2=a(-1)^{2}+b(-1)+c \Rightarrow a-b+c=-2 \tag{2}\\
& 5=a(3)^{2}+b(3)+c \quad \Rightarrow 9 a+3 b+c=5 \tag{3}
\end{align*}
$$

5.1 Example 8 Using Curve Fitting to Find an Equation Through Three Points (cont.)

Add equations (4) and (5), then solve for a.

$$
\begin{aligned}
24 a-4 b & =9 \\
8 a+4 b & =7 \\
\hline 32 a \quad & =16 \Rightarrow a=\frac{1}{2}
\end{aligned}
$$

Substitute $1 / 2$ for a into equation (4) to solve for b.

$$
\begin{aligned}
24\left(\frac{1}{2}\right)-4 b & =9(4) \\
12-4 b & =9 \Rightarrow-4 b=-3 \Rightarrow b=\frac{3}{4}
\end{aligned}
$$

5.1 Example 9 Solving an Application Using a System of Three Equations (page 503)

The table shows the number of units of protein, fat, and fiber are in one unit of each ingredient in an animal feed. How many units of each ingredient should be used to make a feed that contains 35 units of protein, 38 units of fat, and 28 units of fiber?

	Corn	Soybeans	Cottonseed	Total
Protein	.25	.4	.2	35
Fat	.4	.2	.3	38
Fiber	.3	.2	.1	28

1 Example 8 Using Curve Fitting to Find an Equation

 Through Three Points (cont.)Multiply equation (2) by -1 , then add the result to equation (1) to eliminate c.

$$
\begin{align*}
& 25 a-5 b+c=7 \\
& -a+b-c=2 \tag{2}\\
& 24 a-4 b=9
\end{align*}
$$

Multiply equation (2) by -1 , then add the result to equation (3) to eliminate c.

$$
\begin{aligned}
& -a+b-c=2 a-b+c=2 \\
& 9 a+3 b+c=5 \\
& \hline 8 a+4 b \quad=7
\end{aligned}
$$

5.1 Example 8 Using Curve Fitting to Find an Equation Through Three Points (cont.)

Now substitute $1 / 2$ for a and $3 / 4$ for b into equation (2) to solve for c.

$$
\begin{aligned}
& \frac{1}{2}-\frac{3}{4}+c=-2 \\
& \quad-\frac{1}{4}+c=-2 \Rightarrow c=-\frac{7}{4} \\
& a=\frac{1}{2}, b=\frac{3}{4}, c=-\frac{7}{4}
\end{aligned}
$$

The equation of the parabola is $y=\frac{1}{2} x^{2}+\frac{3}{4} x-\frac{7}{4}$ or $y=.5 x^{2}+.75 x-1.75$.

5.1 Example 9 Solving an Application Using a System of Three Equations (cont.)

Let $x=$ the number of units of corn.
Let $y=$ the number of units of soybeans.
Let $z=$ the number of units of cottonseed.
Since the total amount of protein is to be 35 units, the first row of the table yields $.25 x+.4 y+.2 z=35$ (1)

The total amount of fat is to be 38 units, so the second row of the table yields $.4 x+.2 y+.3 z=38$

Since the total amount of fiber is to be 28 units, the third row of the table yields $.3 x+.2 y+.1 z=28$
5.1 Example 9 Solving an Application Using a System of Three Equations (cont.)

$$
\begin{align*}
.25 x+.4 y+.2 z & =35 \\
.4 x+.2 y+.3 z & =38 \\
.3 x+.2 y+.1 z & =28 \tag{3}
\end{align*}
$$

Multiply both sides of equation (1) by 100 and both sides of equations (2) and (3) by 10 to obtain the equivalent system

$$
\begin{align*}
25 x+40 y+20 z & =3500 \\
4 x+2 y+3 z & =380 \tag{5}\\
3 x+2 y+z & =280
\end{align*}
$$

5.1 Example 9 Solving an Application Using a System of

 Three Equations (cont.)Substitute 60 for x in equation (7), then solve for z.

$$
\begin{aligned}
-55(60)-40 z & =-4100-55 x-40 z=-4100(7) \\
-3300-40 z & =-4100 \Rightarrow-40 z=-800 \Rightarrow z=20
\end{aligned}
$$

Substitute 60 for x and 20 for z in equation (6), then solve for y.

$$
\begin{aligned}
3(60)+2 y+20 & =2803 x+2 y+z=280(6) \\
200+2 y & =280 \Rightarrow 2 y=80 \Rightarrow y=40
\end{aligned}
$$

Verify that the ordered triple $(60,40,20)$ satisfies the system formed by equations (1), (2), and (3).
The feed should contain 60 units of corn, 40 units of soybeans, and 20 units of cottonseed.

| Copyright $\odot 2008$ Pearson Addison-Wesley. All rights reserved. | $5-3$ |
| :--- | :--- | :--- |

5.2 Example 1 Using the Gauss-Jordan Method (page 512)

Solve the system.

$$
\begin{aligned}
& 2 x+3 y=7 \\
& 3 x-4 y=-32
\end{aligned}
$$

The system has the augmented matrix

$$
\left[\begin{array}{rr|r}
2 & 3 & 7 \\
3 & -4 & -32
\end{array}\right]
$$

Multiply each entry in the first row by $1 / 2$ to get a 1 in the first row, first column position.

$$
\left[\begin{array}{rr|r}
1 & \frac{3}{2} & \frac{7}{2} \\
3 & -4 & -32
\end{array}\right] \frac{1}{2} R 1
$$

5.1 Example 9 Solving an Application Using a System of Three Equations (cont.)
Multiply equation (5) by -20 , then add the result to equation (4) to eliminate y.

$$
\begin{aligned}
25 x+40 y+20 z & =3500 \\
-80 x-40 y-60 z & =-7600 \\
\hline-55 x-40 z & =-4100
\end{aligned}
$$

Multiply equation (6) by -20 , then add the result to equation (4) to eliminate y and z, then solve for x.

$$
\begin{aligned}
& 25 x+40 y+20 z=3500 \\
& \begin{aligned}
&-60 x-40 y-20 z=-6600 \\
& \hline-35 x=-2100 \Rightarrow x+2 y+z=280(6) \\
& \hline
\end{aligned}
\end{aligned}
$$

5.2 Example 1 Using the Gauss-Jordan Method (cont.)

Introduce 0 in the second row, first column by multiplying each element of the first row by -3 and then adding the result to the corresponding element of the second row.

Introduce 1 in the second row, second column by multiplying each element of the second row by $-\frac{2}{17}$.

$$
\left[\begin{array}{cc|c}
1 & \frac{3}{2} & \frac{7}{2} \\
0 & 1 & 5
\end{array}\right]-\frac{2}{17} R 2
$$

5.2 Example 1 Using the Gauss-Jordan Method (cont.)

Finally, introduce 0 in the first row, second column by multiplying each element of the second row by $-\frac{3}{2}$ and then adding the result to the corresponding element of the first row.

$$
\left[\begin{array}{ll|r}
1 & 0 & -4 \\
0 & 1 & 5
\end{array}\right]-\frac{3}{2} R 2+R 1
$$

The last matrix corresponds to the system

$$
\begin{aligned}
& x=-4 \\
& y=5
\end{aligned}
$$

Verify that $(-4,5)$ satisfies the original system.

$$
\text { Solution set: }\{(-4,5)\}
$$

5.2 Example 2 Using the Gauss-Jordan Method (cont.)

There is already a 1 in the first row, first column.
Multiply each entry in the first row by -2 , then add the result to the corresponding element of the second row to get a 0 in the second row, first column position.

$$
\left[\begin{array}{rrr|r}
1 & 1 & -4 & 10 \\
0 & -5 & 9 & -13 \\
3 & -1 & -1 & 12
\end{array}\right]-2 R 1+R 2
$$

5.2 Example 2 Using the Gauss-Jordan Method (cont.)

Multiply each entry in the second row by 4, then add the result to the corresponding element of the third row to get a 0 in the third row, second column position.

$$
\left[\begin{array}{ccc|c}
1 & 1 & -4 & 10 \\
0 & 1 & -\frac{9}{5} & \frac{13}{5} \\
0 & 0 & \frac{19}{5} & -\frac{38}{5}
\end{array}\right] 4 R 2+\mathrm{R} 3
$$

Multiply each entry in the third row by $\frac{5}{19}$, to get a 1 in the third row, third column position.

$$
\left[\begin{array}{rrr|r}
1 & 1 & -4 & 10 \\
0 & 1 & -\frac{9}{5} & \frac{13}{5} \\
0 & 0 & 1 & -2
\end{array}\right] \frac{5}{19} R 3
$$

Copyight © 2008 Pearson Addison-Westey. All rights resened.
5.2 Example 2 Using the Gauss-Jordan Method (page 514)

Solve the system.

$$
\begin{aligned}
x+y-4 z & =10 \\
2 x-3 y+z & =7 \\
3 x-y-z & =12
\end{aligned}
$$

The system has the augmented matrix

$$
\left[\begin{array}{rrr|r}
1 & 1 & -4 & 10 \\
2 & -3 & 1 & 7 \\
3 & -1 & -1 & 12
\end{array}\right]
$$

5.2 Example 2 Using the Gauss-Jordan Method (cont.)

Multiply each entry in the second row by $-\frac{1}{5}$, to get a 1 in the second row, second column position.

$$
\left[\begin{array}{rrr|r}
1 & 1 & -4 & 10 \\
0 & 1 & -\frac{9}{5} & \frac{13}{5} \\
3 & -1 & -1 & 12
\end{array}\right]-\frac{1}{5} R 2
$$

Multiply each entry in the first row by -3 , then add the result to the corresponding element of the third row to get a 0 in the third row, first column position.

$\begin{array}{ll}\text { Copyight © } 2008 \text { Pearson Addison-Westey. All rights reserved. } & 5-40\end{array}$

5.2 Example 2 Using the Gauss-Jordan Method (cont.)

Multiply each entry in the third row by $\frac{9}{5}$, then add the result to the corresponding element of the second row to get a 0 in the second row, third column position.

$$
\left[\begin{array}{rrr|r}
1 & 1 & -4 & 10 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -2
\end{array}\right] \frac{9}{5} R 3+R 2
$$

Subtract row 2 from row 1 to get a 1 in the first row, second column position.
$\left[\begin{array}{rrr|r}1 & 0 & -4 & 11 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2\end{array}\right]$ 1-R2

5.2 Example 2 Using the Gauss-Jordan Method (cont)

Multiply each entry in the third row by 4, then add the result to the corresponding element of the first row to get a 0 in the first row, third column position.

$$
\left[\begin{array}{rrr|r}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -2
\end{array}\right]+4 R 3
$$

Verify that $(3,-1,-2)$ satisfies the original system.
Solution set: $\{(3,-1,-2)\}$

5.2 Example 4 Solving a System with Infinitely Many Solutions (page 516)

Use the Gauss-Jordan method to solve the system. Write the solution set with z arbitrary.

$$
\begin{align*}
& 2 x+y+z=5 \\
& 3 x+2 y-z=-8 \tag{2}
\end{align*}
$$

The system has the augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
2 & 1 & 1 & 5 \\
3 & 2 & -1 & -8
\end{array}\right]} \\
& {\left[\begin{array}{rrr|r}
2 & 1 & 1 & 5 \\
0 & 1 & -5 & -31
\end{array}\right]-3 R 1+2 R 2}
\end{aligned}
$$

5.2 Example 3 Solving an Inconsistent System (page 515)

Use the Gauss-Jordan method to solve the system.

$$
\begin{array}{r}
2 x-3 y=7 \\
-6 x+9 y=0
\end{array}
$$

The system has the augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
2 & -3 & 7 \\
-6 & 9 & 0
\end{array}\right]} \\
& {\left[\begin{array}{rr|r}
0 & 0 & 21 \\
-6 & 9 & 0
\end{array}\right] 3 \mathrm{R} 1+\mathrm{R} 2}
\end{aligned}
$$

The first row corresponds to the equation $0 x+0 y=21$, which has no solution.

Solution set: \varnothing
Copyrigh © 2008 Pearson Addison-Wesley. All rights reserved.
5.2 Example 4 Solving a System with Infinitely Many Solutions (cont.)

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
2 & 0 & 6 & 36 \\
0 & 1 & -5 & -31
\end{array}\right]^{R 1+(-R 2)}} \\
& {\left[\begin{array}{rrr|r}
1 & 0 & 3 & 18 \\
0 & 1 & -5 & -31
\end{array}\right]^{\frac{1}{2} R 1}}
\end{aligned}
$$

It is not possible to go further. The equations that correspond to the final matrix are

$$
x+3 z=18 \text { and } y-5 z=-31
$$

Solve these equations for x and y, respectively

$$
\begin{aligned}
& x+3 z=18 \Rightarrow x=-3 z+18 \\
& y-5 z=-31 \Rightarrow y=5 z-31
\end{aligned}
$$

Solution set: $\{(-3 z+18,5 z-31, z)\}$
Copyright © 2008 Pearson Addison-Wesley. All rights reserved. $\quad 5-4$

5.3 Example 2 Finding Cofactors of Elements (page 525)

Find the cofactor of each of the following elements of the matrix.

$$
\left[\begin{array}{rrr}
5 & -1 & 6 \\
0 & 2 & -9 \\
4 & 1 & 3
\end{array}\right]
$$

(a) 5

Since 5 is in the first row, first column, $i=1$ and $j=1$.

$$
M_{11}=\left|\begin{array}{rr}
2 & -9 \\
1 & 3
\end{array}\right|=15
$$

The cofactor is $(-1)^{1+1}(15)=15$.

5.3 Example 3 Evaluating a 3×3 Determinant (page 526)

Evaluate $\left|\begin{array}{rrr}2 & -3 & 5 \\ 1 & 4 & -5 \\ 0 & 2 & -6\end{array}\right|$, expanding by the third row.

$$
\left|\begin{array}{rrr}
2 & -3 & 5 \\
1 & 4 & -5 \\
0 & 2 & -6
\end{array}\right|=a_{31} \cdot A_{31}+a_{32} \cdot A_{32}+a_{33} \cdot A_{33} .
$$

It is not necessary to calculate A_{31} since $a_{31}=0$.

$$
\begin{aligned}
& A_{32}=(-1)^{3+2} M_{32}=(-1)^{3+2}\left|\begin{array}{rr}
2 & 5 \\
1 & -5
\end{array}\right|=-1(-15)=15 \\
& A_{33}=(-1)^{3+3} M_{33}=(-1)^{3+3}\left|\begin{array}{rr}
2 & -3 \\
1 & 4
\end{array}\right|=11
\end{aligned}
$$

5.3 Example 4 Applying Cramer's Rule to a 2×2 System

 (page 528)Use Cramer's rule to solve the system.

$$
\begin{array}{r}
4 x+3 y=2 \\
x-2 y=5
\end{array}
$$

By Cramer's rule, $x=\frac{D_{x}}{D}$ and $y=\frac{D_{y}}{D}$. Find D first, since if $D=0$, Cramer's rule does not apply. If $D \neq 0$, find D_{x} and D_{y}.

$$
\begin{aligned}
& D=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=\left|\begin{array}{rr}
4 & 3 \\
1 & -2
\end{array}\right|=-11 \\
& D_{x}=\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|=\left|\begin{array}{rr}
2 & 3 \\
5 & -2
\end{array}\right|=-19 \quad D_{y}=\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|=\left|\begin{array}{ll}
4 & 2 \\
1 & 5
\end{array}\right|=18
\end{aligned}
$$

(b) 0

Since 0 is in the second row, first column, $i=2$ and $j=1$.

$$
M_{21}=\left|\begin{array}{rr}
-1 & 6 \\
1 & 3
\end{array}\right|=-9
$$

The cofactor is $(-1)^{2+1}(-9)=9$.
(c) 3

Since 3 is in the third row, third column, $i=3$ and $j=3$.

$$
M_{33}=\left|\begin{array}{rr}
5 & -1 \\
0 & 2
\end{array}\right|=10
$$

The cofactor is $(-1)^{3+3}(10)=10$.

3 Example 3 Evaluating a 3×3 Determinant (page 526)

$$
\begin{aligned}
\left|\begin{array}{rrr}
2 & -3 & 5 \\
1 & 4 & -5 \\
0 & 2 & -6
\end{array}\right| & =a_{31} \cdot A_{31}+a_{32} \cdot A_{32}+a_{33} \cdot A_{33} . \\
& =0 \cdot A_{31}+2 \cdot 15-6 \cdot 11=-36
\end{aligned}
$$

Graphing calculator solution

The screens support the algebraic solution.
5.3 Example 4 Applying Cramer's Rule to a 3×3 System

Use Cramer's rule to solve the system.

$$
\begin{array}{r}
2 x-4 y+z-19=0 \\
4 x+6 y-z+15=0 \\
x+y+2 z-11=0
\end{array}
$$

Rewrite each equation in the form $a x+b y+c z=k$.

$$
\begin{aligned}
2 x-4 y+z & =19 \\
4 x+6 y-z & =-15 \\
x+y+2 z & =11
\end{aligned}
$$

Find the partial fraction decomposition of

$$
\frac{3 x^{3}-3 x^{2}+7 x-4}{x^{2}-x}
$$

The degree of the numerator is greater than the degree of the denominator, so first find the quotient.

$$
\begin{array}{r}
3 x \\
x ^ { 2 } - x \longdiv { 3 x ^ { 3 } - 3 x ^ { 2 } + 7 x - 4 } \\
\frac{3 x^{3}-3 x^{2}}{7 x-4}
\end{array}
$$

5.4 Example 1 Finding a Partial Fraction Decomposition

 (cont.)Let $x=1$. Then equation (1) becomes

$$
7(1)-4=A(1-1)+B(1) \Rightarrow B=3
$$

Let $x=0$. Then equation (1) becomes

$$
7(0)-4=A(0-1)+B(0) \Rightarrow-4=-A \Rightarrow A=4
$$

$$
\frac{3 x^{3}-3 x^{2}+7 x-4}{x^{2}-x}=3+\frac{4}{x}+\frac{3}{x-1}
$$

5.4 Example 2 Finding a Partial Fraction Decomposition

Substitute 3 for x in equation (1), then solve for C.

$$
3^{2}-4(3)+7=A(3-3)^{2}+B(3-3)+C \Rightarrow C=4
$$

We need to find a system of equations to find A and B.
Substitute 1 for x and 4 for C in equation (1):

$$
\begin{align*}
& 1^{2}-4(1)+7=A(1-3)^{2}+B(1-3)+4 \Rightarrow \\
& 4=4 A-2 B+4 \Rightarrow 0=4 A-2 B \tag{2}
\end{align*}
$$

Substitute -1 for x and 4 for C in equation (1):

$$
\begin{align*}
& (-1)^{2}-4(-1)+7=A(-1-3)^{2}+B(-1-3)+4 \Rightarrow \\
& 12=16 A-4 B+4 \Rightarrow 8=16 A-4 B \Rightarrow 2=4 A-B \tag{3}
\end{align*}
$$

The quotient is $\frac{3 x^{3}-3 x^{2}+7 x-4}{x^{2}-x}=3 x+\frac{7 x-4}{x^{2}-x}$.
Now find the partial fraction decomposition for $\frac{7 x-4}{x^{2}-x}$.
Factor the denominato
$\frac{7 x-4}{x^{2}-x}=\frac{7 x-4}{x(x-1)}$
$=\frac{A}{x}+\frac{B}{x-1} \begin{aligned} & \text { Partial fraction } \\ & \text { decomposition }\end{aligned}$

$$
7 x-4=A(x-1)+B x \quad \text { (1) Multiply by } x(x-1) \text {. }
$$

Copyright © 2008 Pearson Addison-Wesley. All rights reserved.
5-62

5.4 Example 2 Finding a Partial Fraction Decomposition (page 537)

Find the partial fraction decomposition of

$$
\frac{x^{2}-4 x+7}{(x-3)^{3}}
$$

This is a proper fraction, and the denominator is already factored with repeated linear factors.

$$
\begin{align*}
& \frac{x^{2}-4 x+7}{(x-3)^{3}}=\frac{A}{x-3}+\frac{B}{(x-3)^{2}}+\frac{C}{(x-3)^{3}} \Rightarrow \\
& x^{2}-4 x+7=A(x-3)^{2}+B(x-3)+C \tag{1}
\end{align*}
$$

5.4 Example 2 Finding a Partial Fraction Decomposition

Solve the system of equations (2) and (3) to find A and B.

$$
\begin{gathered}
4 A-2 B=0(2) \\
\frac{4 A-B=2}{-B=-2 \Rightarrow B=2} \\
4 A-2=2(3) \Rightarrow 4 A=4 \Rightarrow A=1 \\
\frac{x^{2}-4 x+7}{(x-3)^{3}}=\frac{1}{x-3}+\frac{2}{(x-3)^{2}}+\frac{4}{(x-3)^{3}}
\end{gathered}
$$

Find the partial fraction decomposition of

$$
\frac{8 x^{2}+10 x-3}{(x+4)\left(x^{2}+1\right)}
$$

The denominator has distinct linear and quadratic factors, and neither is repeated.

$$
\begin{align*}
& \frac{8 x^{2}+10 x-3}{(x+4)\left(x^{2}+1\right)}=\frac{A}{x+4}+\frac{B x+C}{x^{2}+1} \Rightarrow \\
& 8 x^{2}+10 x-3=A\left(x^{2}+1\right)+(B x+C)(x+4) \tag{1}
\end{align*}
$$

5.4 Example 3 Finding a Partial Fraction Decomposition

(cont.)

Substitute 1 for $x, 5$ for A, and -2 for C in equation (1), then solve for B.

$$
\begin{aligned}
& 8(1)^{2}+10(1)-3=5\left[(1)^{2}+1\right]+[B(1)-2](1+4) \Rightarrow \\
& 15=10+5 B-10 \Rightarrow B=3
\end{aligned}
$$

5.4 Example 4 Finding a Partial Fraction Decomposition

Multiply both sides by $x\left(x^{2}+2\right)^{2}$.

$$
\begin{align*}
x^{4} & +3 x^{3}+4 x^{2}+2 x+4 \\
& =A\left(x^{2}+2\right)^{2}+(B x+C)(x)\left(x^{2}+2\right)+(D x+E) x \tag{1}
\end{align*}
$$

Substitute 0 for x in equation (1):

$$
\begin{align*}
0^{4} & +3(0)^{3}+4(0)^{2}+2(0)+4 \tag{2}\\
& =A\left(0^{2}+2\right)^{2}+(B(0)+C)(0)\left(0^{2}+2\right)+(D(0)+E)(0) \Rightarrow \\
4 & =4 A \Rightarrow 1=A
\end{align*}
$$

Substitute -4 for x in equation (1), then solve for A.

$$
8(-4)^{2}+10(-4)-3=A\left[(-4)^{2}+1\right]+[B(-4)+C][(-4)+4] \Rightarrow
$$

$$
85=17 A \Rightarrow A=5
$$

Substitute 0 for x and 5 for A in equation (1):

$$
\begin{aligned}
& 8(0)^{2}+10(0)-3=5\left[(0)^{2}+1\right]+[B(0)+C](0+4) \Rightarrow \\
& -3=5+4 C \Rightarrow C=-2
\end{aligned}
$$

5.4 Example 4 Finding a Partial Fraction Decomposition (page 539)

Find the partial fraction decomposition of

$$
\frac{x^{4}+3 x^{3}+4 x^{2}+2 x+4}{x\left(x^{2}+2\right)^{2}}
$$

The denominator has a linear factor and repeated

$$
\frac{8 x^{2}+10 x-3}{(x+4)\left(x^{2}+1\right)}=\frac{5}{x+4}+\frac{3 x-2}{x^{2}+1}
$$ quadratic factors.

$$
\frac{x^{4}+3 x^{3}+4 x^{2}+2 x+4}{x\left(x^{2}+2\right)^{2}}=\frac{A}{x}+\frac{B x+C}{x^{2}+2}+\frac{D x+E}{\left(x^{2}+2\right)^{2}}
$$

5.4 Example 4 Finding a Partial Fraction Decomposition

Substitute 1 for A in equation (1), then expand and combine terms on the right side.

$$
\begin{aligned}
x^{4} & +3 x^{3}+4 x^{2}+2 x+4 \\
& =\left(x^{2}+2\right)^{2}+(B x+C)(x)\left(x^{2}+2\right)+(D x+E) x \\
& =x^{4}+4 x^{2}+4+B x^{4}+C x^{3}+2 B x^{2}+2 C x+D x^{2}+E x \\
& =(1+B) x^{4}+C x^{3}+(4+2 B+D) x^{2}+(2 C+E) x+4
\end{aligned}
$$

To get additional equations involving the unknowns, equate the coefficients of like powers of x on the two sides of equation (2).
5.4 Example 4 Finding a Partial Fraction Decomposition (cont.)

$$
\begin{align*}
& 1=1+B \Rightarrow B=0 \\
& 3=C \\
& 4=4+2 B+D \tag{3}\\
& 2=2 C+E \tag{4}
\end{align*}
$$

Substituting 0 for B in equation (3) gives $D=0$.
Substituting 3 for C in equation (4) gives $E=-4$.

$$
\frac{x^{4}+3 x^{3}+4 x^{2}+2 x+4}{x\left(x^{2}+2\right)^{2}}=\frac{1}{x}+\frac{3}{x^{2}+2}+\frac{-4}{\left(x^{2}+2\right)^{2}}
$$

Solve the system.

$$
\begin{align*}
& x^{2}+y=6 \tag{1}\\
& x-y=-4 \tag{2}
\end{align*}
$$

Solve equation (2) for y, then substitute that expression into equation (1) and solve for x :

$$
x-y=-4 \Rightarrow y=x+4
$$

$$
x^{2}+(x+4)=6 \Rightarrow x^{2}+x-2=0 \Rightarrow
$$

$$
(x+2)(x-1)=0 \Rightarrow x=-2 \text { or } x=1
$$

Substituting -2 for x in equation (2) gives $y=2$.
Substituting 1 for x in equation (2) gives $y=5$.
Verify that the ordered pairs $(-2,2)$ and $(1,5)$ satisfy the original equations.

$$
\text { Solution set: }\{(-2,2),(1,5)\}
$$

$$
\begin{align*}
& x^{2}+y=6 \\
& x-y=-4 \tag{2}
\end{align*}
$$

\qquad ,
5.5 Example 2 Solving a Nonlinear System by Elimination (page 544)
Solve the system.

$$
\begin{align*}
x^{2}+y^{2} & =9 \tag{1}\\
9 x^{2}+4 y^{2} & =36 \tag{2}
\end{align*}
$$

Multiply equation (1) by -4 , then add the resulting equation (3) to equation (2).

$$
\begin{aligned}
-4 x^{2}-4 y^{2} & =-36 \\
9 x^{2}+4 y^{2} & =36 \\
\hline 5 x^{2} \quad & =0 \Rightarrow x=0
\end{aligned}
$$

Substitute 0 for x in equation (1), then solve for y.

$$
\begin{aligned}
& x^{2}+y^{2}=9 \\
& y^{2}=9 \Rightarrow y= \pm 3
\end{aligned}
$$

Verify that the ordered pairs $(0,-3)$ and $(0,3)$ satisfy the original equations.

Solution set: $\{(0,-3)$ and $(0,3)\}$

The points of intersection are $(0,-3)$ and $(0,3)$.

5.5 Example 3 Solving a Nonlinear System by a Combination of Methods (cont.)

Substitute $\frac{6}{x}$ for y into equation (1) to solve for x.

$$
\begin{aligned}
x^{2}+x\left(\frac{6}{x}\right)+\left(\frac{6}{x}\right)^{2} & =21 \\
x^{2}+6+\frac{36}{x^{2}} & =21 \\
x^{2}-15+\frac{36}{x^{2}} & =0 \\
x^{4}-15 x^{2}+36 & =0 \\
\left(x^{2}-3\right)\left(x^{2}-12\right) & =0 \Rightarrow x^{2}=3 \Rightarrow x= \pm \sqrt{3} \text { or } \\
x^{2} & =12 \Rightarrow x= \pm 2 \sqrt{3}
\end{aligned}
$$

Graphing calculator solution

Solve each equation for y, and graph them in the same viewing window.

$$
\begin{align*}
& x^{2}+y^{2}=9 \Rightarrow y \\
&= \pm \sqrt{9-x^{2}} \tag{2}\\
& 9 x^{2}+4 y^{2}=36 \Rightarrow y
\end{align*}{ }^{(1)}= \pm \sqrt{9-\frac{9 x^{2}}{4}}= \pm 3 \sqrt{1-\frac{x^{2}}{4}}
$$

5.5 Example 3 Solving a Nonlinear System by a Combination of Methods (page 545)

Solve the system.

$$
\begin{align*}
& x^{2}+x y+y^{2}=21 \tag{1}\\
& x^{2}-x y+y^{2}=9 \tag{2}
\end{align*}
$$

Subtract equation (2) from equation (1) to obtain

$$
\begin{equation*}
2 x y=12 \Rightarrow x y=6 \Rightarrow y=\frac{6}{x} \tag{3}
\end{equation*}
$$

5.5 Example 3 Solving a Nonlinear System by a Combination of Methods (cont.)

Substitute these values into equation (3) to solve for y.

$$
\begin{gathered}
x=\sqrt{3} \Rightarrow y=\frac{6}{\sqrt{3}}=\frac{6 \sqrt{3}}{3}=2 \sqrt{3} \\
x=-\sqrt{3} \Rightarrow y=-\frac{6}{\sqrt{3}}=\frac{6 \sqrt{3}}{3}=-2 \sqrt{3} \\
x=2 \sqrt{3} \Rightarrow y=\frac{6}{2 \sqrt{3}}=\frac{3 \sqrt{3}}{3}=\sqrt{3} \\
x=-2 \sqrt{3} \Rightarrow y=-\frac{6}{2 \sqrt{3}}=-\frac{3 \sqrt{3}}{3}=-\sqrt{3} \\
\text { Solution set: } \\
\{(\sqrt{3}, 2 \sqrt{3}),(-\sqrt{3},-2 \sqrt{3}),(2 \sqrt{3}, \sqrt{3}),(-2 \sqrt{3},-\sqrt{3})\}
\end{gathered}
$$

Copyight $\oplus 2008$ Pearson Addison-Westey. All rights reserved.
5.5 Example 4 Solving a Nonlinear System with an Absolute Value Equation (page 546)
Solve the system.

$$
\begin{aligned}
& x^{2}+y^{2}=4 \\
& -|x|+y=0
\end{aligned}
$$

Solving equation (2) for $|x|$ gives $|x|=y$.
Since $|x| \geq 0$ for all $x, y \geq 0$.
In equation (1), the first term is x^{2}, which is the same as $|x|^{2}$, giving $y^{2}+y^{2}=4 \Rightarrow y^{2}=2 \Rightarrow y= \pm \sqrt{2}$.

Reject the negative solution.

5.5 Example 4 Solving a Nonlinear System with an Absolute Value Equation (cont.)

Graphing calculator solution

Solve each equation for y, and graph them in the same viewing window.

$$
\begin{align*}
& x^{2}+y^{2}=4 \Rightarrow y= \pm \sqrt{4-x^{2}} \tag{1}\\
& -|x|+y=0 \Rightarrow y=|x| \tag{2}
\end{align*}
$$

5.5 Example 5 Solving a Nonlinear System with Nonreal Complex Numbers in its Solutions (page 547)

Solve the system.

$$
\begin{array}{r}
x^{2}+y^{2}=6 \\
3 x^{2}+2 y^{2}=8 \tag{2}
\end{array}
$$

$$
\begin{aligned}
-3 x^{2}-3 y^{2} & =-18 \quad \text { Multiply (1) by }-3 . \\
3 x^{2}+2 y^{2} & =8 \quad \text { (2) } \\
-y^{2} & =-10 \Rightarrow y=10 \Rightarrow y= \pm \sqrt{10}
\end{aligned}
$$

5.5 Example 4 Solving a Nonlinear System with an Absolute Value Equation (cont.)
Substitute $\sqrt{2}$ for y in equation (2) to solve for x.

$$
\begin{aligned}
& -|x|+\sqrt{2}=0 \Rightarrow-|x|=-\sqrt{2} \Rightarrow|x|=\sqrt{2} \Rightarrow \\
& x=\sqrt{2} \text { or } x=-\sqrt{2}
\end{aligned}
$$

Verify that the ordered pairs $(-\sqrt{2}, \sqrt{2})$ and $(\sqrt{2}, \sqrt{2})$ satisfy the original system.

$$
\text { Solution set: }\{(-\sqrt{2}, \sqrt{2}),(\sqrt{2}, \sqrt{2})\}
$$

5.5 Example 4 Solving a Nonlinear System with an Absolute Value Equation (cont.)

The points of intersection are $(-\sqrt{2}, \sqrt{2})$ and $(\sqrt{2}, \sqrt{2})$.

5.5 Example 5 Solving a Nonlinear System with Nonreal Complex Numbers in its Solutions (cont.)

Find the corresponding values of x by substituting the values of y into equation (1).

$$
\begin{aligned}
& y=\sqrt{10} \Rightarrow x^{2}+(\sqrt{10})^{2}=6 \Rightarrow x^{2}=-4 \Rightarrow x= \pm 2 i \\
& y=-\sqrt{10} \Rightarrow x^{2}+(-\sqrt{10})^{2}=6 \Rightarrow x^{2}=-4 \Rightarrow x= \pm 2 i
\end{aligned}
$$

Verify that the ordered pairs $(2 i, \sqrt{10}),(-2 i, \sqrt{10})$, $(2 i,-\sqrt{10})$, and $(-2 i,-\sqrt{10})$ satisfy the original system.

$$
\quad\{(2 i, \sqrt{10}),(-2 i, \sqrt{10}),(2 i,-\sqrt{10}),(-2 i,-\sqrt{10})\}_{\text {5-9 }}
$$

5.5 Example 5 Using a Nonlinear System to Find the Dimensions of a Box (page 547)
The length of the hypotenuse of a right triangle is 41 cm . One of the legs is 31 cm longer than the other. Find the lengths of the two legs of the triangle.

Let $x=$ the length of one leg
Let $y=$ the length of the other leg.
Then, we have the system:

$$
\begin{aligned}
& x^{2}+y^{2}=41^{2} \text { (1) Pythagorean theorem } \\
& x-y=31
\end{aligned}
$$

5.5 Example 5 Using a Nonlinear System to Find the Dimensions of a Box (cont.)
Solve equation (2) for x, then substitute that expression into equation (1) to solve for y.

$$
\begin{aligned}
x & =y+31 \quad \text { From equation (2) } \\
(y+31)^{2}+y^{2} & =41^{2} \Rightarrow 2 y^{2}+62 y-720=0 \Rightarrow \\
y^{2}+31 y-360 & =0 \Rightarrow(y-9)(y+40)=0 \Rightarrow \\
y & =9 \text { or } y=-40
\end{aligned}
$$

Reject the negative solution since length cannot be negative.

Substitute $y=9$ into equation (2) to solve for x.

$$
x-9=31 \Rightarrow x=40
$$

The lengths of the legs are 40 cm and 9 cm .

