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Systems of Linear Equations5.1
Linear Systems ▪ Substitution Method ▪ Elimination Method ▪

Special Systems ▪ Applying Systems of Equations ▪ Solving 

Linear Systems with Three Unknowns (Variables) ▪ Using 

Systems of Equations to Model Data
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Solve the system.

5.1 Example 1 Solving a System by Substitution (page 495)

Solve equation (2) for x: x = 1 + 2y

Replace x in equation (1) with 1 + 2y, then solve for y:

Distributive property

Replace y in equation (2) with 2, then solve for y:
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The solution of the system is (5, 2). Check this 

solution in both equations (1) and (2).

5.1 Example 1 Solving a System by Substitution (cont.)

Solution set: {(5, 2)}
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To solve the system graphically, solve both equations 

for y:

5.1 Example 1 Solving a System by Substitution (cont.)

Graph both Y1 and Y2 in the 

standard window to find 

that their point of 

intersection is (5, 2).
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Solve the system.

5.1 Example 2 Solving a System by Elimination (page  496)

Multiply both sides of equation (1) by 2, and then 

multiply both sides of equation (2) by 3.

Add equations (3) and (4), then solve for x.
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5.1 Example 2 Solving a System by Elimination (cont.)

Substitute 4 for x equation (1), then solve for y.

The solution of the system is (4, –3). Check this 

solution in both equations (1) and (2).
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5.1 Example 2 Solving a System by Elimination (cont.)

Solution set: {(4, –3)}
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5.1 Example 2 Solving a System by Elimination (cont.)

The graph confirms that the solution set is {(4, –3)}.
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5.1 Example 3 Solving an Inconsistent System (page 496)

Solve the system.

Multiply both sides of equation (1) by 2, then add the 

resulting equation to equation (2).

The system is inconsistent.

Solution set: ø
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5.1 Example 3 Solving an Inconsistent System (cont.)

The graphs of the equations are parallel and never 

intersect.
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5.1 Example 4 Solving a System with Infinitely Many 
Solutions (page 497)

Solve the system.

Multiply both sides of equation (2) by 3, then add the 

resulting equation to equation (1).

The result indicates that the equations of the original 

system are equivalent. Any ordered pair that satisfies 

either equation will satisfy the system.
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5.1 Example 4 Solving a System with Infinitely Many 
Solutions (cont.)

From equation (2), we have

The solution set (with x arbitrary) is {(x, 3x – 8)}.

From equation (2), we have

The solution set (with y arbitrary) is
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5.1 Example 4 Solving a System with Infinitely Many 
Solutions (cont.)

The graphs of the two equations coincide.
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5.1 Example 5 Using a Linear System to Solve an 
Application (page 498)

In the 2006 Winter Olympics in Torino, Italy, the two 

countries winning the most medals were Germany and 

the United States. The total number of medals won by 

these two countries was 54, with Germany winning 4 

more medals than the United States. How many 

medals were won by each country? (Source: 

www.infoplease.com)

Let x = the number of medals won by the U.S. 

Let y = the number of medals won by Germany. 

Then, we have the system: 
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5.1 Example 5 Using a Linear System to Solve an 
Application (cont.)

Substitute x + 4 for y in equation (1), then solve for x.

Substitute 25 for x in equation (2), then solve for y.

The U.S. won 25 medals and Germany won 29 medals.
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5.1 Example 5 Using a Linear System to Solve an 
Application (cont.)

Verify that (25, 29) checks in the words of the original 

problem.

The total number of medals won was 25 + 29 = 54.

29 is 4 more than 25.
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5.1 Example 6 Solving a System of Three Equations with 
Three Variables (page 500)

Solve the system

Eliminate y by adding equations (2) and (3) to obtain 

To eliminate y from another pair of equations, multiply 

equation (3) by 4 and add the result to equation (1).
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5.1 Example 6 Solving a System of Three Equations with 
Three Variables (cont.)

Solve the system consisting of equations (4) and (5) by 

multiplying equation (4) by –2 and then adding the result 

to equation (5) to solve for x.

Substitute –2 for x in equation (4) to solve for z.
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5.1 Example 6 Solving a System of Three Equations with 
Three Variables (cont.)

Substitute –2 for x and –2 for z in equation (3) to solve 

for y.

x = –2, y = 3, z = –4.

Verify that (–2, 3, –4) satisfies all three equations in the 

original system.

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 5-22

5.1 Example 6 Solving a System of Three Equations with 
Three Variables (cont.)

Solution set:{(–2, 3, –4)}

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 5-23

5.1 Example 7 Solving a System of Two Equations with 
Three Variables (page 501)

Solve the system. Write the system with z arbitrary.

Multiply equation (1) by –2, then add the result to equation 

(1) to eliminate y.

Now solve equation (3) for x.
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5.1 Example 7 Solving a System of Two Equations with 
Three Variables (cont.)

Substitute 5z – 8 for x in equation (2), then solve for y.

With z arbitrary, the solution set is 



5

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 5-25

5.1 Example 8 Using Curve Fitting to Find an Equation 
Through Three Points (page 502)

Find the equation of the parabola                            that 

passes through the points (–5, 7), (–1, –2), and (3, 5). 

The three points must satisfy the equation. Substitute 

each ordered pair into the equation to obtain a system of 

equations.
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5.1 Example 8 Using Curve Fitting to Find an Equation 
Through Three Points (cont.)

Multiply equation (2) by –1, then add the result to equation 

(1) to eliminate c.

Multiply equation (2) by –1, then add the result to equation 

(3) to eliminate c.
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5.1 Example 8 Using Curve Fitting to Find an Equation 
Through Three Points (cont.)

Add equations (4) and (5), then solve for a.

Substitute ½ for a into equation (4) to solve for b.
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5.1 Example 8 Using Curve Fitting to Find an Equation 
Through Three Points (cont.)

Now substitute ½ for a and ¾ for b into equation (2) to 

solve for c.

The equation of the parabola is                               or
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5.1 Example 9 Solving an Application Using a System of 
Three Equations (page 503)

The table shows the number of units of protein, fat, and 

fiber are in one unit of each ingredient in an animal feed. 

How many units of each ingredient should be used to 

make a feed that contains 35 units of protein, 38 units of 

fat, and 28 units of fiber?
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5.1 Example 9 Solving an Application Using a System of 
Three Equations (cont.)

Let x = the number of units of corn. 

Let y = the number of units of soybeans.

Let z = the number of units of cottonseed.

The total amount of fat is to be 38 units, so the second 

row of the table yields 

Since the total amount of protein is to be 35 units, the first 

row of the table yields 

Since the total amount of fiber is to be 28 units, the third 

row of the table yields 
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5.1 Example 9 Solving an Application Using a System of 
Three Equations (cont.)

Multiply both sides of equation (1) by 100 and both sides 

of equations (2) and (3) by 10 to obtain the equivalent 

system 
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5.1 Example 9 Solving an Application Using a System of 
Three Equations (cont.)

Multiply equation (5) by –20, then add the result to 

equation (4) to eliminate y.

Multiply equation (6) by –20, then add the result to 

equation (4) to eliminate y and z, then solve for x.
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5.1 Example 9 Solving an Application Using a System of 
Three Equations (cont.)

Substitute 60 for x in equation (7), then solve for z.

Substitute 60 for x and 20 for z in equation (6), then solve 

for y.

Verify that the ordered triple (60, 40, 20) satisfies the 

system formed by equations (1), (2), and (3).

The feed should contain 60 units of corn, 40 units of 

soybeans, and 20 units of cottonseed.
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Matrix Solution of Linear Systems5.2
The Gauss-Jordan Method ▪ Special Systems
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Solve the system.

5.2 Example 1 Using the Gauss-Jordan Method (page 512)

The system has the augmented matrix 

Multiply each entry in the first row by ½ to get a 1 in 
the first row, first column position.
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5.2 Example 1 Using the Gauss-Jordan Method (cont.)

Introduce 0 in the second row, first column by 
multiplying each element of the first row by –3 and 
then adding the result to the corresponding element 
of the second row.

Introduce 1 in the second row, second column by 
multiplying each element of the second row by       .
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5.2 Example 1 Using the Gauss-Jordan Method (cont.)

Finally, introduce 0 in the first row, second column by 
multiplying each element of the second row by 
and then adding the result to the corresponding 
element of the first row.

The last matrix corresponds to the system

Verify that (–4, 5) satisfies the original system.

Solution set: {(–4, 5)}
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Solve the system.

5.2 Example 2 Using the Gauss-Jordan Method (page 514)

The system has the augmented matrix 
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5.2 Example 2 Using the Gauss-Jordan Method (cont.)

There is already a 1 in the first row, first column.

Multiply each entry in the first row by –2, then add the 
result to the corresponding element of the second row 
to get a 0 in the second row, first column position.
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5.2 Example 2 Using the Gauss-Jordan Method (cont.)

Multiply each entry in the second row by      , to get a 
1 in the second row, second column position.

Multiply each entry in the first row by –3, then add the 
result to the corresponding element of the third row to 
get a 0 in the third row, first column position.
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5.2 Example 2 Using the Gauss-Jordan Method (cont.)

Multiply each entry in the second row by 4, then add the 

result to the corresponding element of the third row to get 

a 0 in the third row, second column position.

Multiply each entry in the third row by , to get a 1 in the 

third row, third column position.
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5.2 Example 2 Using the Gauss-Jordan Method (cont.)

Subtract row 2 from row 1 to get a 1 in the first row, 

second column position.

Multiply each entry in the third row by    , then add the 

result to the corresponding element of the second row to 

get a 0 in the second row, third column position.



8

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 5-43

5.2 Example 2 Using the Gauss-Jordan Method (cont.)

Multiply each entry in the third row by 4, then add the 

result to the corresponding element of the first row to get 

a 0 in the first row, third column position.

Verify that (3, –1, –2) satisfies the original system.

Solution set: {(3, –1, –2)}
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Use the Gauss-Jordan method to solve the system.

5.2 Example 3 Solving an Inconsistent System (page 515)

The system has the augmented matrix 

The first row corresponds to the equation 0x + 0y = 21, 
which has no solution.

Solution set: ø
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Use the Gauss-Jordan method to solve the system. 

Write the solution set with z arbitrary.

5.2 Example 4 Solving a System with Infinitely Many 
Solutions (page 516)

The system has the augmented matrix 
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5.2 Example 4 Solving a System with Infinitely Many 
Solutions (cont.)

Solution set: {(–3z + 18, 5z – 31, z)}

It is not possible to go further. The equations that 
correspond to the final matrix are

Solve these equations for x and y, respectively
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Determinant Solution of Linear 
Systems

5.3
Determinants ▪ Cofactors ▪ Evaluating n × n Determinants ▪
Cramer’s Rule
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5.3 Example 1 Evaluating a 2 × 2 Determinant (page 523)

Graphing calculator 

solution
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5.3 Example 2 Finding Cofactors of Elements (page 525)

Find the cofactor of each of the following elements of 

the matrix.

(a)  5

Since 5 is in the first row, first column, i = 1 and j = 1.

The cofactor is 
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5.3 Example 2 Finding Cofactors of Elements (cont.)

(b)  0

Since 0 is in the second row, first column, i = 2 and j = 1.

(c)  3

Since 3 is in the third row, third column, i = 3 and j = 3.

The cofactor is 

The cofactor is 
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5.3 Example 3 Evaluating a 3 × 3 Determinant (page 526)

Evaluate                    , expanding by the third row.

It is not necessary to calculate A31 since a31 = 0.
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5.3 Example 3 Evaluating a 3 × 3 Determinant (page 526)
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5.3 Example 4 Applying Cramer’s Rule to a 2 × 2 System 
(page 528)

Use Cramer’s rule to solve the system.

By Cramer’s rule,                               Find D first, 

since if D = 0, Cramer’s rule does not apply. If D ≠ 0, 

find Dx and Dy.
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5.3 Example 4 Applying Cramer’s Rule to a 2 × 2 System 
(cont.)
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5.3 Example 4 Applying Cramer’s Rule to a 2 × 2 System 
(cont.)

Graphing calculator solution

The screens support the algebraic solution.
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5.3 Example 4 Applying Cramer’s Rule to a 3 × 3 System 
(page 529)

Use Cramer’s rule to solve the system.

Rewrite each equation in the form ax + by + cz = k.
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5.3 Example 5 Applying Cramer’s Rule to a 3 × 3 System 
(cont.)

By Cramer’s rule,                                           Find D

first, since if D = 0, Cramer’s rule does not apply.

Use a calculator to find the determinants.

D

Dy Dz

Dx
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5.3 Example 5 Applying Cramer’s Rule to a 3 × 3 System 
(cont.)
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5.3 Example 6 Showing That Cramer’s Rule Does Not Apply 
(page 530)

Show that Cramer’s rule does not apply to the system.

We need to show that D = 0. Expanding about column 

1 gives 

Thus, Cramer’s rule does not apply to the system.
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Partial Fractions5.4
Decomposition of Rational Expression ▪ Distinct Linear Factors ▪
Repeated Linear Factors ▪ Distinct Linear and Quadratic Factors
▪ Repeated Quadratic Factors
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5.4 Example 1 Finding a Partial Fraction Decomposition 
(page 536)

Find the partial fraction decomposition of 

The degree of the numerator is greater than the 

degree of the denominator, so first find the quotient.  
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5.4 Example 1 Finding a Partial Fraction Decomposition 
(cont.)

The quotient is  

Now find the partial fraction decomposition for   

Factor the 
denominator.

Partial fraction 
decomposition

Multiply by x(x – 1).
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5.4 Example 1 Finding a Partial Fraction Decomposition 
(cont.)

Let x = 0. Then equation (1) becomes

Let x = 1. Then equation (1) becomes

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 5-64

5.4 Example 2 Finding a Partial Fraction Decomposition 
(page 537)

Find the partial fraction decomposition of 

This is a proper fraction, and the denominator is 

already factored with repeated linear factors.
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5.4 Example 2 Finding a Partial Fraction Decomposition 
(cont.)

Substitute 3 for x in equation (1), then solve for C.

Substitute 1 for x and 4 for C in equation (1):

We need to find a system of equations to find A and B.

Substitute –1 for x and 4 for C in equation (1):
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5.4 Example 2 Finding a Partial Fraction Decomposition 
(cont.)

Solve the system of equations (2) and (3) to find A

and B.
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5.4 Example 3 Finding a Partial Fraction Decomposition 
(page 537)

Find the partial fraction decomposition of 

The denominator has distinct linear and quadratic 

factors, and neither is repeated.
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5.4 Example 3 Finding a Partial Fraction Decomposition 
(cont.)

Substitute –4 for x in equation (1), then solve for A.

Substitute 0 for x and 5 for A in equation (1):
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5.4 Example 3 Finding a Partial Fraction Decomposition 
(cont.)

Substitute 1 for x, 5 for A, and -2 for C in equation 

(1), then solve for B.
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5.4 Example 4 Finding a Partial Fraction Decomposition 
(page 539)

Find the partial fraction decomposition of 

The denominator has a linear factor and repeated 

quadratic factors.
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5.4 Example 4 Finding a Partial Fraction Decomposition 
(cont.)

Multiply both sides by 

Substitute 0 for x in equation (1):
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5.4 Example 4 Finding a Partial Fraction Decomposition 
(cont.)

Substitute 1 for A in equation (1), then expand and 

combine terms on the right side.

To get additional equations involving the unknowns, 

equate the coefficients of like powers of x on the two 

sides of equation (2).
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5.4 Example 4 Finding a Partial Fraction Decomposition 
(cont.)

Substituting 0 for B in equation (3) gives D = 0.

Substituting 3 for C in equation (4) gives E = –4.
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Nonlinear Systems of Equations5.5
Solving Nonlinear Systems with Real Solutions ▪ Solving 
Nonlinear Systems with Nonreal Complex Solutions ▪ Applying 
Nonlinear Systems
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Solve the system.

5.5 Example 1 Solving a Nonlinear System by Substitution 
(page 543)

Solve equation (2) for y, then substitute that 
expression into equation (1) and solve for x:
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5.5 Example 1 Solving a Nonlinear System by Substitution 
(cont.)

Substituting –2 for x in equation (2) gives y = 2.

Substituting 1 for x in equation (2) gives y = 5.

Verify that the ordered pairs (–2, 2) and (1, 5) satisfy 
the original equations.

Solution set: {(–2, 2), (1, 5)}
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5.5 Example 1 Solving a Nonlinear System by Substitution 
(cont.)

Graphing calculator solution

Solve each equation for y, and graph them in the 
same viewing window.

The points of intersection are (–2, 2), (1, 5).
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Solve the system.

5.5 Example 2 Solving a Nonlinear System by Elimination 
(page 544)

Multiply equation (1) by –4, then add the resulting 
equation (3) to equation (2).
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5.5 Example 2 Solving a Nonlinear System by Elimination 
(cont.)

Substitute 0 for x in equation (1), then solve for y.

Verify that the ordered pairs (0, –3) and (0, 3) satisfy 
the original equations.

Solution set: {(0, –3) and (0, 3)}
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5.5 Example 2 Solving a Nonlinear System by Elimination 
(cont.)

Graphing calculator solution

Solve each equation for y, and graph them in the 
same viewing window.
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5.5 Example 2 Solving a Nonlinear System by Elimination 
(cont.)

The points of intersection are (0, –3) and (0, 3).
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Solve the system.

5.5 Example 3 Solving a Nonlinear System by a 
Combination of Methods (page 545)

Subtract equation (2) from equation (1) to obtain
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5.5 Example 3 Solving a Nonlinear System by a 
Combination of Methods (cont.)

Substitute     for y into equation (1) to solve for x.
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5.5 Example 3 Solving a Nonlinear System by a 
Combination of Methods (cont.)

Solution set: 

Substitute these values into equation (3) to solve for y.
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Solve the system.

5.5 Example 4 Solving a Nonlinear System with an Absolute 
Value Equation (page 546)

Solving equation (2) for |x| gives |x| = y.

Since |x| ≥ 0 for all x, y ≥ 0.

Reject the negative solution.

In equation (1), the first term is x2, which is the same 

as |x|2, giving 
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Substitute       for y in equation (2) to solve for x.

5.5 Example 4 Solving a Nonlinear System with an Absolute 
Value Equation (cont.)

Verify that the ordered pairs                 and

satisfy the original system.  

Solution set:
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5.5 Example 4 Solving a Nonlinear System with an Absolute 
Value Equation (cont.)

Graphing calculator solution

Solve each equation for y, and graph them in the 
same viewing window.
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5.5 Example 4 Solving a Nonlinear System with an Absolute 
Value Equation (cont.)

The points of intersection are                 and
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Solve the system.

5.5 Example 5 Solving a Nonlinear System with Nonreal 
Complex Numbers in its Solutions (page 547)

Copyright © 2008 Pearson Addison-Wesley.  All rights reserved. 5-90

Find the corresponding values of x by substituting the 

values of y into equation (1).

5.5 Example 5 Solving a Nonlinear System with Nonreal 
Complex Numbers in its Solutions (cont.)

Verify that the ordered pairs                 

satisfy the original 

system.  

Solution set: 
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The length of the hypotenuse of a right triangle is 

41 cm. One of the legs is 31 cm longer than the other. 

Find the lengths of the two legs of the triangle.

5.5 Example 5 Using a Nonlinear System to Find the 
Dimensions of a Box (page 547)

Let x = the length of one leg

Let y = the length of the other leg.

Then, we have the system: 
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Solve equation (2) for x, then substitute that 

expression into equation (1) to solve for y .

5.5 Example 5 Using a Nonlinear System to Find the 
Dimensions of a Box (cont.)

Reject the negative solution since length cannot be 

negative.

Substitute y = 9 into equation (2) to solve for x.

The lengths of the legs are 40 cm and 9 cm.


