

5

Systems and Matrices

5.6 Systems of Inequalities and Linear Programming

5.7 Properties of Matrices

5.8 Matrix Inverses

5.6 Example 1 Graphing a Linear Inequality (page 555)

Graph $3 x-2 y \geq 6$.
The boundary of the graph is the straight line $3 x-2 y=6$, which can be graphed using the x intercept 2 and the y-intercept -3 . The boundary is included in the graph, so draw a straight line.

Solve the equation for y.

$$
3 x-2 y \geq 6 \Rightarrow-2 y \geq-3 x+6 \Rightarrow y \leq \frac{3}{2} x-3
$$

5.6 Example 1 Graphing a Linear Inequality (cont)

The graph of the solution set is the half-plane below the boundary.

5.6 Example 1 Graphing a Linear Inequality (cont.)

Check

Choose a test point not on the boundary line and substitute its coordinates into the inequality.

$$
\begin{gathered}
\text { Test point: }(0,0) \\
3(0)-2(0) \geq 6 \Rightarrow 0 \geq 6 \quad \text { False }
\end{gathered}
$$

The point $(0,0)$ lies above the boundary and is not included in the solution set, which agrees with the graph.

Copyight © 2008 Pearson Addison-Wesley. All inghts reserved.
5.6 Example 2(a) Graphing Systems of Inequalities (page 556)

Graph the system

$$
\begin{align*}
& y<4-x^{2} \\
& x<y-1 \tag{2}
\end{align*}
$$

The graph of inequality (1) is a dashed parabola with vertex $(0,4)$ and x-intercepts $(-2,0)$ and $(2,0)$. Shade the region inside the parabola.

Copyrigh © 2008 Pearson Addison-Westey. All rights reserved. 5-98
5.6 Example 2(a) Graphing Systems of Inequalities (cont.)

$$
\begin{align*}
& y<4-x^{2} \tag{1}\\
& x<y-1 \tag{2}
\end{align*}
$$

The graph of inequality (2) is a dashed line with x-intercept -1 and y-intercept 1. Shade the region above the line.

5.6 Example 2(a) Graphing Systems of Inequalities (cont.)

The graph of the solution set is the common region.

$|y| \leq 1 \Rightarrow-1 \leq y \leq 1$, so
the graph consists of the points between and on the lines $y=1$ and $y=-1$.
5.6 Example 2(b) Graphing Systems of Inequalities (page 556)

Graph the system

$$
\begin{align*}
|y| & \leq 1 \tag{2}\\
x & \geq 0 \tag{3}\\
y & >2|x|+1 \tag{1}
\end{align*}
$$

5.6 Example 2(b) Graphing Systems of Inequalities (cont.)

$$
\begin{equation*}
|y| \leq 1 \tag{1}
\end{equation*}
$$

The graph of $y>2|x|+1$ is the set of points inside the boundary $y=2|x|+1$.

5.6 Example 2(b) Graphing Systems of Inequalities (page 550)

Since the solution sets of $|y| \leq 1$ (1) and $y>2|x|+1$ (3) have no points in common, the solution set is \varnothing.

5.6 Example 3 Finding a Maximum Profit Model (cont.)

The company must produce at least 40 MP3 players, so $x \geq 40$.
Since no more than 60 MP3 players can be produced, $x \leq 60$.

No more than 75 DVD players can be produced, so $y \leq 75$.

The number of MP3 players cannot exceed the number of DVD players, so $x \leq y$.

The number of MP3 players and the number of DVD players cannot be negative, so $x \geq 0$ and $y \geq 0$.

Copyight © 2008 Pearson Addison-Westey. All rights resened.

5.6 Example 3 Finding a Maximum Profit Model (cont.)

Each MP3 player give a profit of $\$ 50$, so the daily profit from production of x MP3 players is $50 x$.

The profit from production of y DVD players is $20 y$.

Thus, the total daily profit is $50 x+20 y$. This is the function to be maximized, the objective function.

5.6 Example 3 Finding a Maximum Profit Model (page 557)

A company makes two products - MP3 players and DVD players. Each MP3 player gives a profit of \$50, and each DVD player gives a profit of $\$ 20$. The company must manufacture at least 40, but no more than 60, MP3 players per day. The number of DVD players cannot exceed 75 per day, and the number of MP3 players cannot exceed the number of DVD players. How many of each should the company manufacture to obtain the maximum profit?

Let $x=$ the number of MP3 players produced daily Let $y=$ the number of DVD players produced daily

5.6 Example 3 Finding a Maximum Profit Model (cont.)

The constraints form the system

$$
\begin{aligned}
& x \geq 40 \\
& x \leq 60 \\
& y \geq 75 \\
& x \leq y \\
& x \geq 0 \\
& x \geq 0 \\
& y \geq 0
\end{aligned}
$$

5.6 Example 3 Finding a Maximum Profit Model (cont.)

To find the maximum possible profit, graph each constraint. The graph of the feasible region is the intersection of the regions that are the graphs of the individual constraints.

5.6 Example 3 Finding a Maximum Profit Model (cont.)

From the graph, we see that there are four vertices $(40,40),(40,75),(60,75)$, and $(60,60)$. Evaluate the objective function at each vertex to find the maximum possible value

Point	Profit $=50 x+20 y$
$(40,40)$	$50(40)+20(40)=2800$
$(40,75)$	$50(40)+20(75)=3500$
$(60,75)$	$50(60)+20(75)=4500$
$(60,60)$	$50(60)+20(60)=4200$

The maximum profit of $\$ 4500$ will be reached when 60 MP3 players and 75 DVD players are produced.

Example 4 Finding a Minimum Cost Model (page 559)

Robin takes vitamin pills each day. She wants at least 16 units of Vitamin A, at least 5 units of Vitamin B_{1}, and at least 20 units of Vitamin C daily. She can choose between red pills, costing 20¢ each, that contain 8 units of $A, 1$ of B_{1}, and 2 of C , or blue pills, costing $10 ¢$ each, that contain 2 units of $A, 1$ of B_{1}, and 7 of C. How many of each pill should she take each day to minimize her cost and yet fulfill her daily requirements?

Let $x=$ the number of red pills to buy Let $y=$ the number of blue pills to buy

5.6 Example 4 Finding a Minimum Cost Model (cont.)

Robin cannot buy negative numbers of the pills, so $x \geq 0$ and $y \geq 0$.

The constraints form the system

$$
\begin{aligned}
8 x+2 y & \geq 16 \\
x+y & \geq 5 \\
2 x+7 y & \geq 20 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
$$

Thus, the total daily cost is $20 x+10 y$. This is the function to be maximized, the objective function.

5.6 Example 4 Finding a Minimum Cost Model (cont.)

From the graph, we see that the vertices are $(0,8)$, $(1,4),(3,2)$, and (10,0). Evaluate the objective function at each vertex.

Point	Cost $=20 x+10 y$
$(0,8)$	$20(0)+10(8)=80$
$(1,4)$	$20(1)+10(4)=60$
$(3,2)$	$20(3)+10(2)=80$
$(10,0)$	$20(10)+10(0)=200$

The minimum cost of 60ϕ will be obtained when she takes 1 red pill and 4 blue pills per day.

Copyrigh © 2008 Pearson Addison-Wesley. All rights reserved.

5.7 Properties of Matrices

Basic Definitions • Adding Matrices - Special Matrices * Subtracting Matrices - Multiplying Matrices * Applying Matrix Algebra

5.7 Example 2 Adding Matrices (page 566)

Find each sum, if possible.
(a) $\left[\begin{array}{rr}3 & -8 \\ -4 & 6\end{array}\right]+\left[\begin{array}{rr}7 & -5 \\ 10 & -6\end{array}\right]=\left[\begin{array}{cc}3+7 & -8+(-5) \\ -4+10 & 6+(-6)\end{array}\right]$

$$
=\left[\begin{array}{rr}
10 & -13 \\
6 & 0
\end{array}\right]
$$

(b) $\left[\begin{array}{r}-9 \\ 7 \\ 6 \\ -3\end{array}\right]+\left[\begin{array}{r}-9 \\ 5 \\ -6 \\ 10\end{array}\right]=\left[\begin{array}{r}-18 \\ 12 \\ 0 \\ 7\end{array}\right]$

. 7 Example 3 Subtracting Matrices (page 567)

Find each difference, if possible.
(a) $\left[\begin{array}{rr}8 & -9 \\ -6 & 2\end{array}\right]-\left[\begin{array}{rr}-8 & 4 \\ -7 & 11\end{array}\right]=\left[\begin{array}{rr}8-(-8) & -9-4 \\ -6-(-7) & 2-11\end{array}\right]$

$$
=\left[\begin{array}{rr}
16 & -13 \\
1 & -9
\end{array}\right]
$$

(b) $\left[\begin{array}{r}9 \\ -3 \\ 6\end{array}\right]-\left[\begin{array}{l}18 \\ 12 \\ -6\end{array}\right]=\left[\begin{array}{r}-9 \\ -15 \\ 12\end{array}\right]$
(c) $A+B$ if $A=\left[\begin{array}{rrr}3 & -1 & 6 \\ 0 & 7 & -2\end{array}\right]$ and $B=\left[\begin{array}{rr}4 & 8 \\ 3 & -1 \\ -5 & 2\end{array}\right]$
A and B cannot be added because A is a 2×3 matrix, while B is a 3×2 matrix.

7 Example 2 Adding Matrices (cont.)

Find the values of the variables for which each statement is true, if possible.
(a) $\left[\begin{array}{rr}a & b \\ -5 & 0\end{array}\right]=\left[\begin{array}{rr}-3 & 9 \\ c & d\end{array}\right]$

Since corresponding elements are equal, $a=-3$,
$b=9, c=-5$, and $d=0$.
(b) $\left[\begin{array}{ll}x & y\end{array}\right]=\left[\begin{array}{r}3 \\ -5\end{array}\right]$

The statement cannot be true since $\left[\begin{array}{ll}x & y\end{array}\right]$ is a 1×2 matrix, while $\left[\begin{array}{r}3 \\ -5\end{array}\right]$ is a 2×1 matrix.
Copyrigh © 2008 Pearson Addison-Wesley. All rights reserved.

Example 3 Subtracting Matrices (cont.)

(c) $A-B$ if $A=\left[\begin{array}{rrr}4 & 5 & 0 \\ -2 & 3 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}4 & 5 \\ 3 & -2\end{array}\right]$
A and B cannot be subtracted because A is a 2×3 matrix, while B is a 2×2 matrix.

5.7 Example 4 Multiplying Matrices by Scalars (page 568)

Find each product.
(a) $-3\left[\begin{array}{rr}2 & -5 \\ -4 & 0\end{array}\right]=\left[\begin{array}{rr}-3(2) & -3(-5) \\ -3(-4) & -3(0)\end{array}\right]=\left[\begin{array}{rr}-6 & 15 \\ 12 & 0\end{array}\right]$
(b) $\frac{4}{5}\left[\begin{array}{rr}-25 & 10 \\ 15 & -45\end{array}\right]=\left[\begin{array}{rr}-20 & 8 \\ 12 & -36\end{array}\right]$

Example 6 Multiplying Matrices (page 571)

Let $A=\left[\begin{array}{rrr}3 & -4 & 5 \\ 1 & 0 & -6\end{array}\right]$ and $B=\left[\begin{array}{rr}4 & 1 \\ -3 & 8\end{array}\right]$.
Find each product, if possible.
(a) $A B \quad A B$ cannot be calculated.

Matrix A Matrix B $2 \times \underbrace{3}_{\text {different }} 2 \times 2$

(b) $B A$

A 2×2 matrix multiplied by a 2×3 matrix results in a 2×3 matrix.

Copyright © 2008 Pearson Addison-Wesley. All rights resenved.
5-124

5.7 Example 7 Multiplying Square Matrices in Different

 Orders (page 571)Let $C=\left[\begin{array}{rr}2 & -5 \\ -6 & 1\end{array}\right]$ and $D=\left[\begin{array}{rr}3 & -4 \\ 2 & 3\end{array}\right]$. Find each product.
(a) $C D$

$$
\begin{aligned}
{\left[\begin{array}{rr}
2 & -5 \\
-6 & 1
\end{array}\right]\left[\begin{array}{rr}
3 & -4 \\
2 & 3
\end{array}\right] } & =\left[\begin{array}{ll}
2(3)+(-5)(2) & 2(-4)+(-5)(3) \\
-6(3)+1(2) & -6(-4)+1(3)
\end{array}\right] \\
& =\left[\begin{array}{rr}
-4 & -23 \\
-16 & 27
\end{array}\right]
\end{aligned}
$$

5.7 Example 5 Deciding Whether Two Matrices Can Be Multiplied (page 570)

Suppose C is a 2×5 matrix and D is a 4×2 matrix.
(a, b) Can the product CD be calculated? If so, what size is it?
No, $C D$ cannot be calculated. MatrixC Matrix D
$2 \times \underbrace{5}_{\text {different }} 4 \times 2$
(c, d) Can the product $D C$ be calculated? If so, what size is it?
Yes, $D C$ can be calculated.
The result is a 4×5 matrix.
MatrixD MatrixC

Copyright © 2008 Pearson Addison-Wesley. All rights reserved.

7 Example 6 Multiplying Matrices (cont.)

$\left[\begin{array}{rr}4 & 1 \\ -3 & 8\end{array}\right]\left[\begin{array}{rrr}3 & -4 & 5 \\ 1 & 0 & -6\end{array}\right]$
$=\left[\begin{array}{rrr}4(3)+1(1) & 4(-4)+1(0) & 4(5)+1(-6) \\ -3(3)+8(1) & -3(-4)+8(0) & -3(5)+8(-6)\end{array}\right]$
$=\left[\begin{array}{rrr}13 & -16 & 14 \\ -1 & 12 & -63\end{array}\right]$

5.7 Example 7 Multiplying Square Matrices in Different

Orders (cont.)

(b) $D C$
$\left[\begin{array}{rr}3 & -4 \\ 2 & 3\end{array}\right]\left[\begin{array}{rr}2 & -5 \\ -6 & 1\end{array}\right]=\left[\begin{array}{ll}3(2)+(-4)(-6) & 3(-5)+(-4)(1) \\ 2(2)+3(-6) & 2(-5)+3(1)\end{array}\right]$

$$
=\left[\begin{array}{rr}
30 & -19 \\
-14 & -7
\end{array}\right]
$$

5.7 Example 8 Using Matrix Multiplication to Model Plans for a Subdivision (page 572)

A contractor builds three kinds of houses, models A, B, and C , with a choice of two styles, colonial or ranch. Matrix M shows the number of each kind of house the contractor is planning to build for a new 150 -home subdivision. The amounts for each of the main materials used depend on the style of the house. These amounts are shown in matrix Q, while matrix R gives the cost in dollars for each kind of material. Concrete is measured here in cubic yards, lumber in 1000 board feet, brick in 1000s, and shingles in 100 square feet.
(a) What is the total cost of materials for all houses of each model?

To calculate the total cost of material for all houses of each model, first find $M Q$, which will show the total amount of each material needed for all houses of each model.

5.7 Example 8 Using Matrix Multiplication to Model Plans for

 a Subdivision (cont.)Multiplying $M Q$ and the cost matrix R gives the total cost of material for each model.

$$
\begin{aligned}
(M Q) R & =\left[\begin{array}{lllr}
1600 & 50 & 600 & 80 \\
1400 & 55 & 500 & 80 \\
2500 & 95 & 900 & 140
\end{array}\right]\left[\begin{array}{c}
20 \\
180 \\
60 \\
25
\end{array}\right] \\
& =\left[\begin{array}{c}
1600(20)+50(180)+600(60)+80(25) \\
1400(20)+55(180)+500(60)+80(25) \\
2500(20)+95(180)+900(60)+140(25)
\end{array}\right]=\left[\begin{array}{c}
79,000 \\
69,900 \\
124,600
\end{array}\right.
\end{aligned}
$$

The cost of materials for model A is $\$ 79,000$. For model B , the cost is $\$ 69,900$. For model C , the cost is $\$ 124,600$.

Copyright © 2008 Pearson Addison-Wesley. All rights resenved.

5.7 Example 8 Using Matrix Multiplication to Model Plans for

$$
\begin{aligned}
M Q & =\left[\begin{array}{ll}
10 & 30 \\
15 & 25 \\
25 & 45
\end{array}\right]\left[\begin{array}{rrrr}
10 & 2 & 0 & 2 \\
50 & 1 & 20 & 2
\end{array}\right] \\
& =\left[\begin{array}{llll}
10(10)+30(50) & 10(2)+30(1) & 10(0)+30(20) & 10(2)+30(2) \\
15(10)+25(50) & 15(2)+25(1) & 15(0)+25(20) & 15(2)+25(2) \\
25(10)+45(50) & 25(2)+45(1) & 25(0)+45(20) & 25(2)+45(2)
\end{array}\right]
\end{aligned}
$$

Concrete Lumber Brick Shingles
$=\left[\begin{array}{rrrr}1600 & 50 & 600 & 80 \\ 1400 & 55 & 500 & 80 \\ 2500 & 95 & 900 & 140\end{array}\right]$
5.7 Example 8 Using Matrix Multiplication to Model Plans for a Subdivision (cont.)

```
    Colonial Ranch
Model A[[10 30
Model B 15 25 =M
Model C[25 45
```

Concrete Lumber Brick Shingles
$\underset{\operatorname{Colonial}}{\operatorname{Ranch}}\left[\begin{array}{rrrr}10 & 2 & 0 & 2 \\ 50 & 1 & 20 & 2\end{array}\right]=Q$
$=\left[\begin{array}{rrrr}1400 & 55 & 500 & 80 \\ 2500 & 95 & 900 & 140\end{array}\right]$
,
5.7 Example 8 Using Matrix Multiplication to Model Plans for a Subdivision (cont.)
(b) How much of each of the four kinds of material must be ordered?

To find how much of each kind of material to order, total each column of matrix MQ. Write this as a row matrix,

Concrete Lumber Brick Shingles	
$M Q$	$=\left[\begin{array}{rrrr}1600 & 50 & 600 & 80 \\ 1400 & 55 & 500 & 80 \\ 2500 & 95 & 900 & 140\end{array}\right]$
T	$=\left[\begin{array}{llll}5500 & 200 & 2000 & 300\end{array}\right]$

5500 units of concrete, 200 units of lumber, 2000 units of brick and 300 units of shingles must be ordered.
Copyrigh © 2008 Pearson Addison-Westey. All ights reserved. 5-133
5.7 Example 8 Using Matrix Multiplication to Model Plans for a Subdivision (cont.)
(c) What is the total cost of the materials?

To find the total cost of the materials, find TR.

$$
\begin{aligned}
T R & =\left[\begin{array}{c}
20 \\
180 \\
60 \\
25
\end{array}\right]\left[\begin{array}{llll}
5500 & 200 & 2000 & 300
\end{array}\right] \\
& =[20(5500)+180(200)+60(2000)+25(300)] \\
& =[273,500]
\end{aligned}
$$

The total cost of the materials is $\$ 273,500$.
5.8 Example 1 Verifying the Identity Property of I_{3} (page 580)

Let $B=\left[\begin{array}{rrr}3 & -5 & 8 \\ 2 & 0 & 6 \\ -4 & 1 & -7\end{array}\right]$. Show that $I_{3} B=B$.

The 3×3 identity matrix is

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

5.8 Matrix Inverses

Identity Matrices - Multiplicative Inverses - Solving Systems Using Inverse Matrices

5.8 Example 1 Verifying the Identity Property of I_{3} (cont.)

$$
\begin{aligned}
I_{3} B & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
3 & -5 & 8 \\
2 & 0 & 6 \\
-4 & 1 & -7
\end{array}\right] \\
& =\left[\begin{array}{lll}
1(3)+0(2)+0(-4) & 1(-5)+0(0)+0(1) & 1(8)+0(6)+0(-7) \\
0(3)+1(2)+0(-4) & 0(-5)+1(0)+0(1) & 0(8)+1(6)+0(-7) \\
0(3)+0(2)+1(-4) & 0(-5)+0(0)+1(1) & 0(8)+0(6)+1(-7)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3+0+0 & -5+0+0 & 8+0+0 \\
0+2+0 & 0+0+0 & 0+6+0 \\
0+0+(-4) & 0+0+1 & 0+0+(-7)
\end{array}\right] \\
& =\left[\begin{array}{rrr}
3 & -5 & 8 \\
2 & 0 & 6 \\
-4 & 1 & -7
\end{array}\right]=B
\end{aligned}
$$

5.8 Example 2 Finding the Inverse of a 3×3 Matrix (page 583)

Find B^{-1} if $B=\left[\begin{array}{rrr}-4 & 2 & 0 \\ 1 & -1 & 2 \\ 0 & 1 & 4\end{array}\right]$.
Write the augmented matrix $\left[B \mid I_{3}\right]$:

$$
\left[\begin{array}{rrr|rrr}
-4 & 2 & 0 & 1 & 0 & 0 \\
1 & -1 & 2 & 0 & 1 & 0 \\
0 & 1 & 4 & 0 & 0 & 1
\end{array}\right]
$$

The graphing calculator screens support the

$$
\left[\begin{array}{rrr|rrr}
1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0 \\
1 & -1 & 2 & 0 & 1 & 0 \\
0 & 1 & 4 & 0 & 0 & 1
\end{array}\right]-\frac{1}{4} \mathrm{R} 1 \quad 1 \text { in first row, first column }
$$ algebraic solution.

Copyight © 2008 Pearson Addison-Westey. All rights resenved.
5.8 Example 2 Finding the Inverse of a 3×3 Matrix (page 583)
$\left[\begin{array}{rrr|rrr}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{2} & -2 & -\frac{1}{4} & -1 & 0 \\ 0 & 1 & 4 & 0 & 0 & 1\end{array}\right] R 1-R 2 \quad \begin{aligned} & 0 \text { in second row, first } \\ & \text { column }\end{aligned}$
$\left[\begin{array}{rrr|rrr}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{2} & -2 & -\frac{1}{4} & -1 & 0 \\ 0 & 0 & -8 & -\frac{1}{2} & -2 & -1\end{array}\right] 2 R 2-$ R3 $\begin{aligned} & 0 \text { in third row, second } \\ & \text { column }\end{aligned}$
$\left[\begin{array}{rrr|rrr}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0 \\ 0 & 1 & -4 & -\frac{1}{2} & -2 & 0 \\ 0 & 0 & 1 & \frac{1}{16} & \frac{1}{4} & \frac{1}{8}\end{array}\right] \begin{aligned} & \text { 2R2 }\end{aligned} \begin{aligned} & 1 \text { in second row, } \\ & \text { second column; } \\ & 1 \text { in third row, third } \\ & \text { column }\end{aligned}$
Copyrigh © © 2008 Pearson Addison-Wesley. All rights resenved.
5-140

5.8 Example 2 Finding the Inverse of a 3×3 Matrix (page 583)

Graphing calculator solution

The graphing calculator screens support the algebraic solution.

Use the inverse of the coefficient matrix to solve the system.

$$
\begin{aligned}
& 5 x+2 y=-1 \\
& 2 x+3 y=15
\end{aligned}
$$

Write the system in matrix form.

$$
\left[\begin{array}{ll}
5 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-1 \\
15
\end{array}\right]
$$

$$
A=\left[\begin{array}{ll}
5 & 2 \\
2 & 3
\end{array}\right] \quad X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad B=\left[\begin{array}{c}
-1 \\
15
\end{array}\right]
$$

5.8 Example 2 Finding the Inverse of a 3×3 Matrix (page 583)
$\left.\left.\left.\begin{array}{l}{\left[\begin{array}{rrr|rrr}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0 \\ 0 & 1 & 0 & -\frac{1}{4} & -1 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{16} & \frac{1}{4} & \frac{1}{8}\end{array}\right] R 2+4 R 3}\end{array} \begin{array}{l}0 \text { in second row, third } \\ \text { column }\end{array}\right]\left[\begin{array}{rrr|rrl}1 & 0 & 0 & -\frac{3}{8} & -\frac{1}{2} & \frac{1}{4} \\ 0 & 1 & 0 & -\frac{1}{4} & -1 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{16} & \frac{1}{4} & \frac{1}{8}\end{array}\right]+\frac{1}{2} R 2\right) l \begin{array}{l}0 \text { in first row, second } \\ \text { column }\end{array}\right]$

$$
B^{-1}=\left[\begin{array}{rrr}
-\frac{3}{8} & -\frac{1}{2} & \frac{1}{4} \\
-\frac{1}{4} & -1 & \frac{1}{2} \\
\frac{1}{16} & \frac{1}{4} & \frac{1}{8}
\end{array}\right]
$$

Copyrigh © 2008 Pearson Addison-Wesley. All ights reserved.
5-141

5.8 Example 3 Identifying a Matrix With No Inverse (page 584)

Find A^{-1} given that $A=\left[\begin{array}{rrr}4 & -2 & 5 \\ 0 & 1 & 0 \\ -8 & 4 & -10\end{array}\right]$.
Write the augmented matrix $\left[\mathrm{A} \mid \mathrm{I}_{3}\right]$:
$\left[\begin{array}{rrr|rrr}4 & -2 & 5 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ -8 & 4 & -10 & 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{rrr|rrr}4 & -2 & 5 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 1\end{array}\right] 2 R 1+\mathrm{R} 3$

Since there is no way to convert the third element in the third row to a $1, A^{-1}$ does not exist.
Copyrigh © 2008 Pearson Addison-Wesley. All rights reserved.
5-143

Solving Systems of Equations Using Matrix Inverses (cont.)	
Find A^{-1} :	
$\left[A \mid I_{2}\right]=\left[\begin{array}{ll\|ll}5 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1\end{array}\right]$	Write the augmented matrix.
$\left[\begin{array}{cc\|cc}1 & \frac{2}{5} & \frac{1}{5} & 0 \\ 2 & 3 & 0 & 1\end{array}\right]^{\frac{1}{5} \mathrm{R} 1}$	1 in first row, first column
$\left[\begin{array}{rr\|rr}1 & \frac{2}{5} & \frac{1}{5} & 0 \\ 0 & \frac{11}{5} & -\frac{2}{5} & 1\end{array}\right]-2 \mathrm{R} 1+\mathrm{R} 2$	0 in second row, first column
$\left[\begin{array}{cc\|rr}1 & \frac{2}{5} & \frac{1}{5} & 0 \\ 0 & 1 & -\frac{2}{11} & \frac{5}{111}\end{array}\right] \frac{5}{11} R 2$	1 in second row, second column
	${ }_{5} 145$

Inverses (cont.)
$\left[\begin{array}{rr|rr}1 & 0 & \frac{3}{11} & -\frac{2}{11} \\ 0 & 1 & -\frac{2}{11} & \frac{5}{11}\end{array}\right]$ R1- $\frac{2}{5} R 2 \quad 0$ in first row, second column $A^{-1}=\left[\begin{array}{rr}\frac{3}{11} & -\frac{2}{11} \\ -\frac{2}{11} & \frac{5}{11}\end{array}\right]$
Now find $X=A^{-1} B$:

$$
X=\left[\begin{array}{rr}
\frac{3}{11} & -\frac{2}{11} \\
-\frac{2}{11} & \frac{5}{11}
\end{array}\right]\left[\begin{array}{c}
-1 \\
15
\end{array}\right]=\left[\begin{array}{r}
\frac{3}{11}(-1)+\left(-\frac{2}{11}\right)(15) \\
-\frac{2}{11}(-1)+\frac{5}{11}(15)
\end{array}\right]=\left[\begin{array}{r}
-3 \\
7
\end{array}\right]
$$

Solution set: $\{(-3,7)\}$
Copyright © 2008 Pearson Addison-Westey. All rights resenved.

$$
\begin{aligned}
& \text { 5.8 Example 4(b) Solving Systems of Equations Using } \\
& \text { Matrix Inverses (page 585) } \\
& \text { Use the inverse of the coefficient matrix to solve the } \\
& \text { system. } \\
& -4 x+2 y=12 \\
& x-y+2 z=7 \\
& y+4 z=20
\end{aligned}
$$

Write the system in matrix form.

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
-4 & 2 & 0 \\
1 & -1 & 2 \\
0 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
12 \\
7 \\
20
\end{array}\right]} \\
& A=\left[\begin{array}{rrr}
-4 & 2 & 0 \\
1 & -1 & 2 \\
0 & 1 & 4
\end{array}\right] \quad X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad B=\left[\begin{array}{r}
12 \\
7 \\
20
\end{array}\right] \\
& \text { Copyrigh © 2008 Pearson Addison-Westey. Al righis resened. }
\end{aligned}
$$

5.8 Example 4(b) Solving Systems of Equations Using Matrix Inverses (cont.)

$$
\begin{aligned}
& {\left[\begin{array}{rrr|rrr}
1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0 \\
0 & 2 & 0 & -\frac{1}{2} & -2 & 1 \\
0 & 1 & 4 & 0 & 0 & 1
\end{array}\right] 2 R 2+R 3} \\
& 0 \text { in second row, third } \\
& \text { column } \\
& {\left[\begin{array}{rrr|rrr}
1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0 \\
0 & 1 & 0 & -\frac{1}{4} & -1 & \frac{1}{2} \\
0 & 1 & 4 & 0 & 0 & 1
\end{array}\right] \frac{1}{2} R 2} \\
& 1 \text { in second row, second } \\
& \text { column } \\
& {\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & -\frac{3}{8} & -\frac{1}{2} & \frac{1}{4} \\
0 & 1 & 0 & -\frac{1}{4} & -1 & \frac{1}{2} \\
0 & 0 & 4 & \frac{1}{4} & 1 & \frac{1}{2}
\end{array}\right] R 3-\frac{1}{2} R 2 \quad l \begin{array}{l}
0 \text { in first row, second } \\
\text { R2 }
\end{array} \begin{array}{l}
0 \text { in third row, second } \\
\text { column }
\end{array}}
\end{aligned}
$$

5.8 Example 4(a) Solving Systems of Equations Using Matrix Inverses (cont.)

Graphing calculator solution

The graphing calculator screens support the algebraic solution.

5.8 Example 4(b) Solving Systems of Equations Using Matrix Inverses (cont.)

Find A^{-1} :

5.8 Example 4(b) Solving Systems of Equations Using Matrix Inverses (cont.)
$\left[\begin{array}{rrr\|rrr}1 & 0 & 0 & -\frac{3}{8} & -\frac{1}{2} & \frac{1}{4} \\ 0 & 1 & 0 & -\frac{1}{4} & -1 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{16} & \frac{1}{4} & \frac{1}{8}\end{array}\right] \frac{1}{4} R 3 \quad 1$ in third row, third column
$A^{-1}=\left[\begin{array}{rrr}-\frac{3}{8} & -\frac{1}{2} & \frac{1}{4} \\ -\frac{1}{4} & -1 & \frac{1}{2} \\ \frac{1}{16} & \frac{1}{4} & \frac{1}{8}\end{array}\right]$

5.8 Example 4(b) \begin{tabular}{c}
Solving Systems of Equations Using

Matrix Inverses (cont.)

Now find $X=A^{-1} B$:

$X=\left[\begin{array}{rrr}-\frac{3}{8} & -\frac{1}{2} & \frac{1}{4} \\
-\frac{1}{4} & -1 & \frac{1}{2} \\
\frac{1}{16} & \frac{1}{4} & \frac{1}{8}\end{array}\right]\left[\begin{array}{r}12 \\
7 \\
20\end{array}\right]=\left[\begin{array}{r}-\frac{3}{8}(12)-\frac{1}{2}(7)+\frac{1}{4}(20) \\
-\frac{1}{4}(12)-1(7)+\frac{1}{2}(20) \\
\frac{1}{16}(12)+\frac{1}{4}(7)+\frac{1}{8}(20)\end{array}\right]=\left[\begin{array}{r}-3 \\
0 \\
5\end{array}\right]$

Solution set: $\{(-3,0,5)\}$

$.$

5.152
\end{tabular}

[^0]
[^0]: 5.8 Example 4(b) Solving Systems of Equations Using Matrix Inverses (cont.)
 Graphing calculator solution

 The graphing calculator screens support the algebraic solution.

