

Example 6-6

Houston
cear lake

- Let x be a continuous random variable that has a normal distribution with a mean of 50 and a standard deviation of 10. Convert the following x values to z values and find the probability to the left of these points

$$
\begin{aligned}
& x=55 \\
& x=35
\end{aligned}
$$

- Solution
- $x=55$
- $\mathrm{P}(\mathrm{x}<55)=\mathrm{P}(z<.50)=.6915$
$\underset{\mathrm{x}=35}{z=} \frac{x-\mu}{\sigma}=\frac{55-50}{10}$
- $\mathrm{P}(\mathrm{x}<35)=\mathrm{P}(z<-1.50)=.0668$

$$
z=\frac{x-\mu}{\sigma}=\frac{35-50}{10}=-1.50
$$

$-z$ value for $x=55$

Example 6-8

University
 of Houston Clear Iake

- Let x be a normal random variable with its mean equal to 40 and standard deviation equal to 5 . Find the probability of to the right of $x=55$, i.e., $P(x>55)$
- Solution
- For $\mathrm{x}=55: \quad z=\frac{55-40}{5}=3.00$
- $\mathrm{P}(\mathrm{x}>55)=\mathrm{P}(\mathrm{z}>3.00)=1.0-.9987=.0013$

Example 6-7

- Let x be a continuous random variable that is normally distributed with a mean of 25 and a standard deviation of 4 .
Find the area (a) between $x=25$ and $x=32 \&$
(b) between $x=18$ and $x=34$
- Solution
 $\mathrm{P}(25<\mathrm{x}<32)=\mathrm{P}(0<\mathrm{z}<1.75)$
$=.4599$
- (b) the z value for $\mathrm{x}=18$ is -1.75
the z value for $\mathrm{x}=34$ is 2.25
$\mathrm{P}(18<\mathrm{x}<34)=\mathrm{P}(-1.75<\mathrm{z}<2.25)$
$=.9878-.0401=.9477$

$=.9878-.0401=.9477$
6-18

1	1
0	1.75

6.5 Applications of the Normal Distribution

- Word problems
- First identify mean μ and standard deviation σ
- Translate words or sentences into probability
- Apply exact same idea of 6.4
- Standardization
- Finding probability
- Let's see a few examples

6.6 Determining the \mathbf{z} \& x Values When an Area Under the Normal Distribution Curve is Known

- We have discussed that
- given a a score, we find a unique probability (left tail)
- given an x value, we find a unique probability (left tail)
- Now we go backwards or inversely.
- given a probability of standard normal distribution \mathbf{Z}, find the corresponding z score
- given a probability of general normal distribution \mathbf{X}, find the corresponding x value
- Key points
- Find left tail from the $\mathrm{z}(\mathrm{x})$ point based on the given probability
- then use Table IV, calculator TI-83, or Excel to find the $\mathrm{z}(\mathrm{x})$ values

- Steps to find z, given probability
- Find the left tail based on given probability
- Use the left tail to check the Table, or use TI-83 or Excel to find z

$$
\text { - TI - 83: 2nd } \Rightarrow>\text { DISTR } \Rightarrow>\text { invNorm(left-tail) }
$$

- Excel: norm.S.inv(left-tail)
- Find z such that
- $P(Z \leq z)=0.95$
- $P(Z>z)=0.05$
- $\mathrm{P}(\mathrm{Z} \leq \mathrm{z})=0.05$
- $\mathrm{P}(-\mathrm{z} \leq \mathrm{Z} \leq \mathrm{z})=0.90$
- $\mathrm{P}(-\mathrm{z} \leq \mathrm{Z} \leq \mathrm{z})=0.95$
- $\mathrm{P}(-\mathrm{z} \leq \mathrm{Z} \leq \mathrm{z})=0.99$

Finding an x Value for a Normal Distribution

Example 6-18

- Recall Example 6-14. It is known that the life of a calculator manufactured by Texas Instruments has a normal distribution with a mean of 54 months and a standard deviation of 8 months. What should the warranty period be to replace a malfunctioning calculator if the company does not want to replace more than 1% of all the calculators sold?
- Solution
- Area to the left of $x=.01$ or 1%
- Find the z value from the normal distribution table for .0100 . Table IV does not contain a value that is exactly .0100
The value closest to .0100 in the table is .0099 . The $z=-2.33$
- $x=\mu+z \sigma=54+(-2.33)(8)=54-18.64=35.36$
- Thus, the company should replace all calculators that start to malfunction within 35 months

6.7 Normal Approximation to Binomial Distribution Clear lake

Figure 6.50 Histogram for the probability distribution of Table 6.5.

Example 6-19

Almost all high school students who intend to go to college take the SAT test. In a recent test, the mean SAT score (in verbal and mathematics) of all students was 1020. Debbie is planning to take this test soon. Suppose the SAT scores of all students who take this test with Debbie will have a normal distribution with a mean of 1020 and a standard deviation of 153 . What should her score be on this test so that only 10% of all examinees score higher than she does?

- Solution
- Area to the left of the x value $=1.0-.10=.9000$
- Look for 9000 in the body of the normal distribution table. The value closest to .9000 in Table IV is .8997 , and the z value is 1.28
- $x=\mu+z \sigma=1020+1.28(153)=1020+195.84=1215.84 \approx 1216$
- Thus, if Debbie scores 1216 on the SAT, only about 10% of the examinees are expected to score higher than she does.

