\qquad

1. $f(x)$ is a degree 4 polynomial whose graph is shown below. Use the graph to factor $f(x)$.

Zeros are -1, 0, 3 (bounce) $(x+1)(x)(x-3)^{2}$
2. Find a rational function with the following features:
x-intercepts at 5 and 3; y-intercepts at 15;
vertical asymptote at $x=1$; horizontal asymptote at $y=1$
$(x-5)(x-3)$
$(x-1)^{2}$
3. Find the horizontal asymptote of the given function: $\mathrm{g}(\mathrm{x})=\frac{x+7}{x^{2}-3}$

$$
\frac{D e g=1}{D e g=2} \text { so } y=0
$$

4. Write an equation for a function with a hole in its graph at $x=3$.

$$
\frac{(x-3) \text { (anything) }}{(x-3)(\text { anything })}
$$

5. In the following formula, $f(x)$ is the minimum number of hours of studying required to attain a test score of $\mathrm{x}: f(x)=\frac{0.55 x}{125.5-x}$. How many hours of study are needed to score a 90 ? $f(x)=\frac{0.55(90)}{125.5-90}=1.39$ hours 125.5-90
6. Find an equation for the rational function whose graph is shown below.

Follow these steps: 1) Find the vertical asymptotes.
2) Find the horizontal asymptotes
3) Find the x-intercept.

$$
\frac{(x+2)}{x(x+3)}
$$

7. If f varies jointly as q^{2} and h, and $f=64$ when $q=6$ and $h=2$, find q when $f=160$ and $h=5$.

$$
F=k q^{2} h \Rightarrow 64=f\left(6^{2}\right)(2) \Rightarrow f=8 / 9 \Rightarrow \Rightarrow 160=(8 / 9) q^{2}(5) \Rightarrow q=6
$$

8. Solve for $\mathrm{x}: \mathrm{e}^{\mathrm{x}-6}=\left(\frac{1}{e^{4}}\right)^{x+6} \quad \begin{aligned} & e^{x-6}=e^{-4(x+6)} \\ & x-6=-4 x-24\end{aligned}$

$$
x=\frac{-18}{5}
$$

9. Find the future value of $\$ 6996$ invested for 8 years at 5% compounded quarterly.

$$
6996\left(1+\frac{.05}{4}\right)^{(4)(8)}=\$ 10,410.96
$$

10. The number of reports of a certain virus has increased exponentially since 1960. The number of cases can be approximated using the functions $r(t)=54 e^{0.006 t}$, where t is the number of years since 1960. Estimate the number of cases in the year 2000.

$$
r(t)=54 e \cdot 006(40)=69 \text { cases }
$$

11. Solve for $x: \log _{7} 343=x$

$$
\begin{aligned}
& 7^{x}=343 \text { since } 7^{3}=343, x=3 \\
& \text { OR } \\
& \log 7^{x}=\log 343 \Rightarrow x \log 7=\log 343 \Rightarrow \Rightarrow x=3
\end{aligned}
$$

12. Write the expression as a sum difference, or product of logarithms. Assume that all variables represent positive real numbers. $\log _{a}\left(8 x^{2} y^{3}\right)$

$$
\log _{a} 8+2 \log _{a} x+3 \log _{a} y
$$

13. Given that $\log _{a} 2=0.301$ and $\log _{a} 3=0.4771$, find $\log _{a} \sqrt{48}$
$(1 / 2) \log 48=1 / 2[\log 6+\log 8]=1 / 2[\log 2+\log 3+3 \log 2]=0.8406$
14. Solve the rational inequality. Write the solution in interval notation and on a number line.

$$
\frac{(2 x-3)(3 x+8)}{(x-6)} \geq 0 \quad\left[-\frac{8}{3}, \frac{3}{2}\right] \cup(6, \infty)
$$

15. Solve the rational inequality. Write the solution in interval notation and on a number line.
$\frac{(x-9)(x+7)}{(x-8)} \leq 0 \quad(-\infty,-7] \cup(8,9]$
16. Write the equation for the line through $(-2,-1)$ perpendicular to $-3 x-8 y=-32$
$M=-\frac{3}{8}$
$-1=\frac{8}{3}(-2)+b$
$b=\frac{13}{3}$
$y=\underline{8} x+\frac{13}{3}$
17. Write the equation for the line through (4, -2) parallel to $2 x-y=5$
$M=2$
$-2=2(4)+b$
$b=-10$

$$
y=2 x-10
$$

18. Determine whether the relation defines a function. Explain
a)

\# of Rounds of Golf	
Played in the U.S.	
Year(x)	\# Rounds (y)
1997	$547,200,000$
1998	$528,500,000$
1999	$564,100,000$
2000	$587,100,000$

Yes, it is a function
B.

19. Solve the system of inequalities

$$
\begin{aligned}
& 2 x+8 y=3 \\
& 4 x-12 y=-1
\end{aligned} \quad(1 / 2,1 / 4)
$$

20. Solve the system of inequalities: $x+y \leq 4$

$$
5 x-y \geq 8
$$

