

Review of Basic Concepts

Sections R.1-R. 4

© 2008 Pearson Addison-Wesley. All rights reserved

R
 Review of Basic Concepts

R. 1 Sets

R. 2 Real Numbers and Their Properties

R. 3 Polynomials

R. 4 Factoring Polynomials

R. 1 Sels

Basic Definitions - Operations on Sets

R. 1 Example 1 Listing the Elements of a Set (page 3)

Write the elements belonging to:
(a) $\{x \mid x$ is a natural number between 8 and 12\}
$\{9,10,11\}$
(b) $\{x \mid x$ is a state that borders lowa $\}$
\{Nebraska, South Dakota, Minnesota, Wisconsin, Missouri\}

R. 1 Example 2 Finding the Complement of a Set (page 4)

Let $U=\{1,2,3,4,5,6,7,8,9\}$,
$A=\{2,4,6,8\}, B=\{3,6,9\}$
Find $A^{\prime}, B^{\prime}, U^{\prime}, \varnothing^{\prime}$
A^{\prime} contains the elements of U that are not in A : $\{1,3,5,7,9\}$
B^{\prime} contains the elements of U that are not in B : $\{1,2,4,5,7,8\}$
$U^{\prime}=\varnothing$
$\varnothing^{\prime}=U$

R. 1 Example 3 Finding the Intersection of Two Sets (page 4)

Find
(a) $\{15,20,25,30\} \cap\{12,18,24,30\}$
$\{15,20,25,30\} \cap\{12,18,24,30\}=\{30\}$
The element 30 is the only one belonging to both sets.

R. 1 Example 3 Finding the Intersection of Two Sets (cont.)

Find

(b) $\{3,6,9,12,15,18\} \cap\{6,12,18,24\}$
$\{3,6,9,12,15,18\} \cap\{6,12,18,24\}=\{6,12,18\}$ The elements 6,12 , and 18 belong to both sets.

R. 1 Example 4 Finding the Union of Two Sets (page 4)

Find

(a) $\{1,3,5,7,9\} \cup\{3,6,9,12\}$

List the elements of the first set, then include the elements from the second set that are not already listed.
$\{1,3,5,7,9\} \cup\{3,6,9,12\}=\{1,3,5,6,7,9,12\}$

R. 1 Example 4 Finding the Union of Two Sets (cont.)

Find

(b) $\{9,10,11,12\} \cup\{10,12,14,16\}$
$\{9,10,11,12\} \cup\{10,12,14,16\}$

$$
=\{9,10,11,12,14,16\}
$$

R. 2 Real Numbers and Their Properties

Sets of Numbers and the Number Line - Exponents - Order of Operations - Properties of Real Numbers - Order on the Number Line - Absolute Value

R. 2 Example 1 Identifying Elements of Subsets of the Real Numbers (page 8)
 Let $S=\left\{-12,-7.25,-\sqrt{3},-\frac{5}{6}, 0, \overline{45}, \sqrt{9}, \frac{21}{3}, 999\right\}$

List the elements of S that belong to each set.
(a) natural numbers $\left\{\sqrt{9}\right.$ (or 3), $\frac{21}{3}$ (or 7),999 $\}$
(b) whole numbers $\left\{0, \sqrt{9}\right.$ (or 3), $\frac{21}{3}$ (or 7), 999$\}$

R. 2 Example 1 Identifying Elements of Subsets of the Real Numbers (cont.)
 Let $S=\left\{-12,-7.25,-\sqrt{3},-\frac{5}{6}, 0, \overline{45}, \sqrt{9}, \frac{21}{3}, 999\right\}$

List the elements of S that belong to each set.
(c) integers $\quad\left\{-12,0, \sqrt{9}\right.$ (or 3), $\frac{21}{3}$ (or 7), 999$\}$
(d) rational numbers All elements of S except $-\sqrt{3}$
R. 2 Example 1 Identifying Elements of Subsets of the Real Numbers (cont.)

Let $S=\left\{-12,-7.25,-\sqrt{3},-\frac{5}{6}, 0, \overline{45}, \sqrt{9}, \frac{21}{3}, 999\right\}$

List the elements of S that belong to each set.
(e) irrational numbers $-\sqrt{3}$
(f) real numbers

All elements of S are real numbers.

R. 2 Example 2 Evaluating Exponential Expressions (page 10)

Evaluate each expression and identify the base and the exponent.

$$
\begin{aligned}
& \text { (a) } 10^{3} \quad 10^{3}=\underbrace{10 \cdot 10 \cdot 10}_{3 \text { factors of } 10}=64 \begin{array}{l}
\text { Base: } 10 \\
\text { Exponent: } 3
\end{array} \\
& \begin{array}{ll}
\text { (b) }(-3)^{4} & (-3)^{4}=(-3) \cdot(-3) \cdot(-3) \cdot(-3)=81 \\
\text { Base: }-3 \quad \text { Exponent: } 4
\end{array}
\end{aligned}
$$

R. 2 Example 2 Evaluating Exponential Expressions (cont.)

Evaluate each expression and identify the base and the exponent.

$$
\begin{array}{ll}
\text { (c) }-3^{4} & -3^{4}=-(3 \cdot 3 \cdot 3 \cdot 3)=-81 \\
& \text { Base: } 3 \quad \text { Exponent: } 4 \\
\text { (d) } 2 \cdot 5^{2} & \begin{array}{l}
2 \cdot 5^{2}=2 \cdot 5 \cdot 5=50 \\
\\
\\
\text { Base: } 5 \quad \text { Exponent: } 2
\end{array} \\
\text { (e) }(2 \cdot 5)^{2} & (2 \cdot 5)^{2}=10^{2}=10 \cdot 10=100
\end{array}
$$

Base: 10 Exponent: 2

R. 2 Example 3(a) Using Order of Operations (page 11)

Evaluate

$$
6 \div 3+2^{3} \cdot 5
$$

$$
\begin{aligned}
6 \div 3+2^{3} \cdot 5 & =6 \div 3+8 \cdot 5 & & \text { Evaluate the exponential } \\
& =2+8 \cdot 5 & & \text { Divide } \\
& =2+40 & & \text { Multiply } \\
& =42 & & \text { Add }
\end{aligned}
$$

R. 2 Example 3(b) Using Order of Operations (cont.)

Evaluate

$$
(30-5) \cdot 3 \div 15+7
$$

$$
\begin{array}{rlrl}
(30-5) \cdot 3 \div 15+7 & =25 \cdot 3 \div 15+7 & & \text { Work within the } \\
& =75 \div 15+7 & & \text { Marenthesis } \\
& =5+7 & & \text { Multiply } \\
& =12 & & \text { Divide } \\
\text { Add }
\end{array}
$$

R. 2 Example 3(c) Using Order of Operations (cont.)

Evaluate

$$
\frac{2^{4}-11}{9+3 \cdot 2}
$$

$$
\frac{2^{4}-11}{9+3 \cdot 2}=\frac{16-11}{9+6} \quad \begin{aligned}
& \text { Evaluate } \\
& \text { Multiply }
\end{aligned}
$$

$$
=\frac{5}{15}=\frac{1}{3} \quad \text { Subtract } \quad \text { Adimplify }
$$

R. 2 Example 3(d) Using Order of Operations (cont.)

Evaluate

$$
\begin{aligned}
& \begin{aligned}
\frac{-7^{2}-(-9)}{6(-3)-1(-2)}
\end{aligned} \\
& \begin{aligned}
\frac{-7^{2}-(-9)}{5(-3)-1(-2)} & =\frac{-49-(-9)}{6(-3)-1(-2)} \\
& =\frac{-49+9}{-18+2}
\end{aligned} \\
&=\frac{-40}{-16}=\frac{5}{2}
\end{aligned} \begin{array}{ll}
\text { Evaluate the exponential } \\
\text { Add } \quad \text { Add } \quad \text { Simplify }
\end{array}
$$

R. 2 Example 4(a) Using Order of Operations (page 11)

$$
\begin{aligned}
& \text { Evaluate } 6 a^{2}+5 b-3 c \text { using } a=-4, b=3, \text { and } \\
& c=-6 .
\end{aligned}
$$

$$
\begin{array}{rlrl}
6 a^{2}+5 b-3 c & =6(-4)^{2}+5(3)-3(-6) & & \text { Substitute } \\
& =6(16)+5(3)-3(-6) & & \text { Evaluate the } \\
\text { exponential } \\
& =96+15+18 & & \text { Multiply } \\
& =129 & & \text { Add }
\end{array}
$$

R. 2 Example 4(b) Using Order of Operations (cont.)

$$
\begin{aligned}
& \text { Evaluate } \frac{4 b-3(a-1)^{2}}{c+9} \text { using } a=-4, b=3 \text {, and } \\
& \begin{array}{rlr}
c=-6 . & \\
\begin{array}{rlr}
\frac{4 b-3(a-1)^{2}}{c+9} & =\frac{4(3)-3(-4-1)^{2}}{-6+9} & \text { Substitute } \\
& =\frac{4(3)-3(-5)^{2}}{-6+9} & \text { Subtract } \\
& =\frac{4(3)-3(25)}{-6+9} & \begin{array}{l}
\text { Evaluate the } \\
\text { exponential } \\
\text { Multiply, } \\
\text { subtract, and } \\
\text { simplify }
\end{array}
\end{array}
\end{array} \begin{aligned}
& =\frac{12-75}{3}=\frac{-63}{3}=-21
\end{aligned} \\
&
\end{aligned}
$$

R. 2 Example 5(a) Using the Commutative and Associative Properties to Simplify Expressions (page 13)

Simplify $(12+2 x)+18$
$(12+2 x)+18=(2 x+12)+18$ Commutative property

$$
=2 x+(12+18) \quad \text { Associative property }
$$

$$
=2 x+30
$$

R.2 Example 5(b) Using the Commutative and Associative Properties to Simplify Expressions (cont)

$$
\begin{aligned}
& \text { Simplify } \begin{aligned}
&\left(\frac{4}{7}\right)(-35 t) \\
&\left(\frac{4}{7}\right)(-35 t)=\left(\frac{4}{7} \cdot(-35)\right) t \quad \text { Associative property } \\
&=-20 t
\end{aligned}
\end{aligned}
$$

R. 2 Example 5(c) Using the Commutative and Associative Properties to Simplify Expressions (cont.)

Simplify $(-54 s)\left(-\frac{4}{9}\right)$

$$
\begin{array}{rlrl}
(-54 s)\left(-\frac{4}{9}\right) & =(s(-54))\left(-\frac{4}{9}\right) & & \text { Commutative property } \\
& =s\left(-54 \cdot\left(-\frac{4}{9}\right)\right) & & \text { Associative property } \\
& =\left(-54 \cdot\left(-\frac{4}{9}\right)\right) s & & \text { Commutative property } \\
& =24 s &
\end{array}
$$

R. 2 Example 6 Using the Distributive Property (page 14)

Rewrite using the distributive property and simplify.

(b) $-(-3 r+5 s)=-1(-3 r+5 s)=-3 r-5 s$

R. 2 Example 6 Using the Distributive Property (cont.)

Rewrite using the distributive property and simplify.

$$
\text { (c) } \begin{aligned}
\frac{3}{4}\left(\frac{5}{6} p+\frac{1}{2} q\right. & -28) \\
& =\frac{3}{4}\left(\frac{5}{6} p+\frac{1}{2} q-28\right) \\
& =\frac{3}{4}\left(\frac{5}{6} p\right)+\frac{3}{4}\left(\frac{1}{2} q\right)-\frac{3}{4}(28) \\
& =\frac{5}{8} p+\frac{3}{8} q-21
\end{aligned}
$$

R. 2 Example 6 Using the Distributive Property (cont.)

Rewrite using the distributive property and simplify.
(d) $22 t-55=11(2 t)-11(5)=11(2 t-5)$

R. 2 Example 7 Evaluating Absolute Values (page 15)

Evaluate each expression:

(a) $|-6.85|=6.85$

$$
\text { (b) }-|50|=-50
$$

(c) $-\left|-\frac{2}{3}\right|=-\frac{2}{3}$
(d) $|y|$, if $y=\sqrt{2}$

$$
|\sqrt{2}|=\sqrt{2}
$$

R. 2 Example 8 Measuring Blood Pressure Difference

Find P_{d} for a patient with a systolic pressure, P, of 146.

$$
P_{d}=|P-120|=|146-120|=|26|=26
$$

R. 2 Example 9 Evaluating Absolute Value Expressions

(page 16)
Let $m=13$ and $n=-9$. Evaluate each expression.

$$
\begin{aligned}
\text { (a) } \begin{aligned}
|3 m+5 n| & =-|3(13)+5(-9)| \\
& =-|39-45|=-|6|=6 \\
\text { (b) } \frac{|2 m|-3|n|}{|m+n|} & =\frac{|2(13)|-3|(-9)|}{|13+(-9)|}=\frac{|26|-3|-9|}{|4|} \\
& =\frac{26-3(9)}{4}=\frac{26-27}{4}=\frac{1}{4}
\end{aligned}
\end{aligned}
$$

R. 3 Polynomials

Rules for Exponents - Polynomials - Addition and Subtraction Multiplication - Division

R. 3 Example 1 Using the Product Rule (page 22)

Find each product.
(a) $m^{6} \cdot m^{8}=m^{6+8}=m^{14}$
(b) $\left(-5 r^{3}\right)\left(6 r^{4}\right)(-3 r)=(-5)(6)(-3) \cdot\left(r^{3} r^{4} r\right)$ Commutative and associative properties

$$
\begin{aligned}
& =90 \cdot r^{3+4+1} \quad \text { Product rule } \\
& =90 r^{8}
\end{aligned}
$$

R. 3 Example 2 Using the Power Rules (page 22)

Simplify. Assume all variables represent nonzero real numbers.
(a) $\left(7^{3}\right)^{5}=7^{3(5)}=7^{15}$
(b) $\left(2^{5} y^{3}\right)^{4}=\left(2^{5}\right)^{4}\left(y^{3}\right)^{4}$

$$
=2^{5(4)} y^{3(4)}=2^{20} y^{12}
$$

R. 3 Example 2 Using the Power Rules (cont.)

Simplify. Assume all variables represent nonzero real numbers.
(c) $\left(\frac{4^{3}}{z^{2}}\right)^{5}=\frac{\left(4^{3}\right)^{5}}{\left(z^{2}\right)^{5}}=\frac{4^{3(5)}}{z^{2(5)}}=\frac{4^{15}}{z^{10}}$
(d) $\left(\frac{-3 a^{3}}{b c^{4}}\right)^{2}=\frac{\left(-3 a^{3}\right)^{2}}{\left(b c^{4}\right)^{2}}=\frac{(-3)^{2}\left(a^{3}\right)^{2}}{b^{2}\left(c^{4}\right)^{2}}=\frac{9 a^{6}}{b^{2} c^{8}}$

R. 3 Example 3 Using the Definition of a^{0} (page 24)

Evaluate each power.

(a) 8^{0}
(b) -8^{0}
(c) $(-8)^{0}$
(d) $-(-8)^{0}$
(e) $\left(-3 b^{8}\right)^{0}$

$$
\begin{array}{lll}
\text { (a) } 8^{0}=1 & \text { (b) }-8^{0}=-1 & \text { (c) }(-8)^{0}=1 \\
\text { (d) }-(-8)^{0}=-1 & \text { (e) }\left(-3 b^{8}\right)^{0}=1, b \neq 0
\end{array}
$$

R.3 Example 4 Adding and Subtracting Polynomials

(page 24)
Add or subtract.

$$
\text { (a) } \begin{aligned}
& \left(17 x^{3}-10 x^{2}+x\right)+\left(-9 x^{3}+10 x^{2}-5 x\right) \\
& =(17-9) x^{3}+(-10+10) x^{2}+(1-5) x \\
& =8 x^{3}-4 x
\end{aligned}
$$

(b) $\left(-6 m^{4}-11 m^{2}+21\right)-\left(m^{4}-6 m^{2}+35\right)$

$$
\begin{aligned}
& =(-6-1) m^{4}+[-11-(-6)] m^{2}+(21-35) \\
& =-7 m^{4}-5 m^{2}-14
\end{aligned}
$$

R.3 Example 4 Adding and Subtracting Polynomials

Add or subtract.

$$
\text { (c) } \begin{aligned}
& \left(10 r^{3} s^{6}+5 r^{6} s^{3}\right)+\left(25 r^{3} s^{6}-15 r^{6} s^{3}\right) \\
& =(10+25) r^{3} s^{6}+(5-15) r^{6} s^{3} \\
& =35 r^{3} s^{6}-10 r^{6} s^{3}
\end{aligned}
$$

R. 3 Example 4 Adding and Subtracting Polynomials

Add or subtract.

$$
\text { (d) } \begin{aligned}
& 6\left(z^{2}-5 z+3\right)-4\left(3 z^{2}-2 z+9\right) \\
= & 6 z^{2}-6(5 z)+6(3)-4\left(3 z^{2}\right)-4(-2 z)-4(9) \\
= & 6 z^{2}-30 z+18-12 z^{2}+8 z-36 \\
= & -6 z^{2}-22 z-18
\end{aligned}
$$

R. 3 Example 5 Multiplying Polynomials (page 26)

Multiply $(4 t-5)\left(3 t^{2}-2 t+7\right)$

$$
\begin{aligned}
& 3 t^{2}-2 t+7 \\
& \frac{4 t-5}{-15 t^{2}+10 t-35} \leftarrow-5\left(3 t^{2}-2 t+7\right) \\
& \frac{12 t^{3}-8 t^{2}+28 t}{12 t^{3}-23 t^{2}+38 t-35} \leftarrow 4 t\left(3 t^{2}-2 t+7\right) \\
& \text { Add in columns }
\end{aligned}
$$

R. 3 Example 6(a) Using FOIL to Multiply Two Binomials (page 27)

Find the product.

$$
(7 y+3)(4 y-5)
$$

$$
\begin{aligned}
& \text { F O I L } \\
& =(7 y)(4 y)+(7 y)(-5)+3(4 y)+3(-5) \\
& =28 y^{2}-23 y-15-35 y+12 y=-23 y
\end{aligned}
$$

R. 3 Example 6(b) Using FOIL to Multiply Two Binomials (cont.)

Find the product.

$$
(6 p+11)(6 p-11)
$$

$$
\begin{aligned}
& \text { F O I L } \\
& =(6 p)(6 p)+6 p(-11)+11(6 p)+11(-11) \\
& =36 p^{2}-121-66 p+66 p=0
\end{aligned}
$$

R. 3 Example 6(c) Using FOIL to Multiply Two Binomials (cont.)

Find the product.

$$
x^{3}(2 x-5)(2 x+5)
$$

$$
=x^{3}[2 x(2 x)+2 x(5)+(-5)(2 x)+(-5)(5)] \quad \mathrm{FOIL}
$$

$$
=x^{3}\left(4 x^{2}+10 x-10 x-25\right)=x^{3}\left(4 x^{2}-25\right)
$$

Combine like terms
$=4 x^{5}-25 x^{3} \quad$ Distributive property

R.3 Example 7 Using the Special Products (page 27)

Find each product.
(a) $(7 m-10)(7 m+10)=49 m^{2}-100$
(b) $\left(4 r^{2}+9\right)\left(4 r^{2}-9\right)=16 r^{4}-81$
(c) $\left(5 x^{2}-8 y^{4}\right)\left(5 x^{2}+8 y^{4}\right)=25 x^{4}-64 y^{8}$

R. 3 Example 7 Using the Special Products (cont.)

Find each product.
(d) $(8 z+3)^{2}=64 z^{2}+48 z+9$
(e) $\left(5 z-12 q^{3}\right)^{2}=25 z^{2}-120 z q^{3}+144 q^{6}$

R. 3 Example 8(a) Multiplying More Complicated Binomials

 (page 28)Find the product: $[(4 x-3)+7 y][(4 x-3)-7 y]$

$$
\begin{aligned}
{[(4 x-3)+7 y] } & {[(4 x-3)-7 y] \quad \begin{array}{c}
\text { Proaur } \\
\text { and dif } \\
\text { terms }
\end{array} } \\
& =(4 x-3)^{2}-(7 y)^{2} \\
& =16 x^{2}-24 x+9-49 y^{2}
\end{aligned}
$$

Find the product: $(a-b)^{4}$

$$
\begin{aligned}
(a-b)^{4}= & (a-b)^{2}(a-b)^{2} \\
= & \left(a^{2}-2 a b+b^{2}\right)\left(a^{2}-2 a b+b^{2}\right) \\
= & a^{4}-2 a^{3} b+a^{2} b^{2}-2 a^{3} b+4 a^{2} b^{2} \\
& -2 a b^{3}+a^{2} b^{2}-2 a b^{3}+b^{4} \\
= & a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}
\end{aligned}
$$

R. 3 Example 8(c) Multiplying More Complicated Binomials

(cont.)

Find the product: $(s+4 t)^{3}$

$$
\begin{aligned}
(s+4 t)^{3} & =(s+4 t)^{2}(s+4 t) \\
& =\left(s^{2}+8 s t+16 t^{2}\right)(s+4 t) \\
& =s^{3}+8 s^{2} t+16 s t^{2}+4 s^{2} t+32 s t^{2}+64 t^{3} \\
& =s^{3}+12 s^{2} t+48 s t^{2}+64 t^{3}
\end{aligned}
$$

R.3 Example 9 Dividing Polynomials (page 29)

Divide $12 n^{3}+11 n^{2}+5 n-8$ by $3 n+2$

$$
4 n^{2}+n+1
$$

$3 n + 2 \longdiv { 1 2 n ^ { 3 } + 1 1 n ^ { 2 } + 5 n - 8 }$ $12 n^{3}+8 n^{2}$
$3 n^{2}+5 n$
$3 n^{2}+2 n$ $3 n-8$ $3 n+2$
-10

R. 3 Example 9 Dividing Polynomials (cont.)

$$
\left(12 n^{3}+11 n^{2}+5 n-8\right) \div(3 n+2)=4 n^{2}+n+1+\frac{-10}{3 n+2}
$$

R. 3 Example 10 Dividing Polynomials with Missing Terms (page 29)

Divide $8 x^{4}+12 x^{2}+7 x-18$ by $x^{2}+2$
$8 x^{2}-4$
$x ^ { 2 } + 0 x + 2 \longdiv { 8 x ^ { 4 } + 0 x ^ { 3 } + 1 2 x ^ { 2 } + 7 x - 1 8 }$

$$
\begin{array}{r}
\frac{8 x^{4}+0 x^{3}+16 x^{2}}{-4 x^{2}+7 x-18} \\
\frac{-4 x^{2}-0 x-8}{7 x-10}
\end{array}
$$

$$
\left(8 x^{4}+12 x^{2}+7 x-18\right) \div\left(x^{2}+2\right)=8 x^{2}-4+\frac{7 x-10}{x^{2}+2}
$$

R. 4 Factoring Polynomials

Factoring Out the Greatest Common Factor - Factoring by Grouping - Factoring Trinomials - Factoring Binomials • Factoring by Substitution

R. 4 Example 1 Factoring Out the Greatest Common Factor (page 34)

Factor out the greatest common factor from each polynomial.
(a) $6 a^{2}-18 a^{4}=6 a^{2}\left(1-3 a^{2}\right)$
(b) $14 x^{3} y^{2}-28 x^{2} y^{3}+21 x^{2} y^{2}$

$$
=7 x^{2} y^{2}(2 x-4 y+3)
$$

Common Factor (cont.)

Factor out the greatest common factor from the polynomial.

$$
\text { (c) } \begin{aligned}
& 24(x-2)^{3}-16(x-2)^{2}+6(x-2) \\
= & 2(x-2)\left[12(x-2)^{2}-16(x-2)+1\right] \\
= & 2(x-2)\left[12\left(x^{2}-4 x+4\right)-8 x+16+3\right] \\
= & 2(x-2)\left(12 x^{2}-48 x+48-8 x+16+3\right) \\
= & 2(x-2)\left(12 x^{2}-56 x+67\right)
\end{aligned}
$$

R. 4 Example 2(a) Factoring By Grouping (page 35)

Factor by grouping.

$$
\begin{aligned}
r^{2} s+3 r^{2}-5 s-15 & =\left(r^{2} s+3 r^{2}\right)-(5 s+15) \\
& =r^{2}(s+3)-5(s+3) \\
& =\left(r^{2}-5\right)(s+3)
\end{aligned}
$$

R. 4 Example 2(b) Factoring By Grouping (page 35)

Factor by grouping.

$$
\begin{aligned}
4 m^{2}-m^{2} n+4 n-n^{2} & =\left(4 m^{2}-m^{2} n\right)+\left(4 n-n^{2}\right) \\
& =m^{2}(4-n)+n(4-n) \\
& =\left(m^{2}+n\right)(4-n)
\end{aligned}
$$

R. 4 Example 2(c) Factoring By Grouping (page 35)

Factor by grouping.

$$
\begin{aligned}
9 y^{3}-15 y^{2}+6 y-10 & =\left(9 y^{3}-15 y^{2}\right)+(6 y-10) \\
& =3 y^{2}(3 y-5)+2(3 y-5) \\
& =\left(3 y^{2}+2\right)(3 y-5)
\end{aligned}
$$

R. 4 Example 3(a) Factoring Trinomials (page 36)

Factor $5 z^{2}+4 z-12$, if possible.

The positive factors of 5 are 5 and 1.

The factors of -12 are -12 and 1,12 and -1 , -6 and 2,6 and $-2,-4$ and 3 , or 4 and -3 .

R. 4 Example 3(a) Factoring Trinomials (cont.)

Factor $5 z^{2}+4 z-12$.
Try different combinations:

$$
\begin{aligned}
& (5 z-12)(z+1)=5 z^{2}-7 z-12 \quad \text { incorrect } \\
& (5 z+4)(z-3)=5 z^{2}-11 z-12 \quad \text { incorrect } \\
& (5 z-6)(z+2)=5 z^{2}+4 z-12 \quad \text { correct } \\
& 5 z^{2}+4 z-12=(5 z-6)(z+2)
\end{aligned}
$$

R.4 Example 3(b) Factoring Trinomials (page 36)

Factor $12 t^{2}-5 t-3$, if possible.

The positive factors of 12 are 12 and 1, 6 and 2, or 4 and 3.

The factors of -3 are -3 and 1 or 3 and -1 .

Factor $12 t^{2}-5 t-3$.
Try different combinations:

$$
\begin{aligned}
& (2 t+3)(6 t-1)=12 t^{2}+16 t-3 \text { incorrect } \\
& (12 t-3)(t+1)=12 t^{2}+9 t-3 \text { incorrect } \\
& (4 t-3)(3 t+1)=12 t^{2}-5 t-3 \text { correct } \\
& 12 t^{2}-5 t-3=(4 t-3)(3 t+1)
\end{aligned}
$$

R.4 Example 3(c) Factoring Trinomials (page 36)

Factor $3 x^{2}-15 x+16$, if possible.

The positive factors of 3 are 3 and 1.

The negative factors of 16 are -16 and -1 ,
-8 and -2 , or -4 and -4 .

R. 4 Example 3(c) Factoring Trinomials (page 36)

Factor $3 x^{2}-15 x+16$
Try different combinations:

$$
\begin{aligned}
&(3 x-16)(x-1)=3 x^{2}-19 x+16 \\
&(3 x-1)(x-16)=3 x^{2}-49 x+16 \\
&(3 x-8)(x-2)=3 x^{2}-14 x+16 \\
&(3 x-2)(x-8)=3 x^{2}-26 x+16 \\
&(3 x-4)(x-4)=3 x^{2}-16 x+16 \\
&(3 n c o r r e c t \\
& \text { incorrect } \\
& 3 x^{2}-15 x+16 \text { is prime } .
\end{aligned}
$$

R.4 Example 3(d) Factoring Trinomials (page 36)

Factor $24 x^{2}+42 x+15$, if possible.

Factor out the GCF, 3, first:

$$
24 x^{2}+42 x+15=3\left(8 x^{2}+14 x+5\right)
$$

The positive factors of 8 are 8 and 1 or 4 and 2 .

The positive factors of 5 are 5 and 1.

R.4 Example 3(d) Factoring Trinomials (page 36)

Factor $24 x^{2}+42 x+15$.
Try different combinations:

$$
\begin{array}{cl}
(2 x+5)(4 x+1)=8 x^{2}+22 x+5 & \text { incorrect } \\
(8 x+5)(x+1)=8 x^{2}+13 x+5 & \text { incorrect } \\
(4 x+5)(2 x+1)=8 x^{2}+14 x+5 & \text { correct } \\
24 x^{2}+42 x+15=3\left(8 x^{2}+14 x+5\right)=3(4 x+5)(2 x+1)
\end{array}
$$

R. 4 Example 4 Factoring Perfect Square Trinomials (page 37)

Factor each trinomial:

(a) $49 x^{2}+28 x y+4 y^{2}=(7 x+2 y)^{2}$
(b) $81 a^{2} b^{2}-90 a b+25=(9 a b-5)^{2}$

R. 4 Example 5 Factoring Differences of Squares (page 38)

Factor each trinomial:

(a) $64 r^{2}-49=(8 r-7)(8 r+7)$
(b) $169 u^{6}-144 v^{4}=\left(13 u^{3}+12 v^{2}\right)\left(13 u^{3}-12 v^{2}\right)$
(c) $(2 c-3 d)^{2}-16 f^{2}=(2 c-3 d+4 f)(2 c-3 d-4 f)$

R. 4 Example 5 Factoring Differences of Squares (cont.)

Factor the trinomial:

$$
\text { (d) } \begin{aligned}
x^{2}+18 x+81-25 y^{2} & =\left(x^{2}+18 x+81\right)-25 y^{2} \\
& =(x+9)^{2}-25 y^{2} \\
& =(x+9+5 y)(x+9-5 y)
\end{aligned}
$$

R. 4 Example 5 Factoring Differences of Squares (cont.)

Factor the trinomial:

$$
\text { (e) } \begin{aligned}
4 x^{2}-y^{2}-10 y-25 & =4 x^{2}-\left(y^{2}+10 y+25\right) \\
& =4 x^{2}-(y+5)^{2} \\
& =(2 x+(y+5))(2 x-(y+5)) \\
& =(2 x+y+5)(2 x-y-5)
\end{aligned}
$$

R. 4 Example 6 Factoring Sums or

Differences of Cubes (page 39)

Factor each polynomial:
(a) $t^{3}+1000=t^{3}+10^{3}=(t+10)\left(t^{2}-10 x+10^{2}\right)$

$$
=(t+10)\left(t^{2}-10 x+100\right)
$$

(b) $r^{3}-8 s^{3}=r^{3}-(2 s)^{3}$

$$
\begin{aligned}
& =(r-2 s)\left[r^{2}-r(2 s)+(2 s)^{2}\right] \\
& =(r-2 s)\left(r^{2}-2 r s+4 s^{2}\right)
\end{aligned}
$$

R. 4 Example 6 Factoring Sums or Differences of Cubes (cont.)

Factor each polynomial:
(c) $125 u^{9}-216 v^{12}$

$$
\begin{aligned}
& =\left(5 u^{3}\right)^{3}-\left(6 v^{4}\right)^{3} \\
& =\left(5 u^{3}-6 v^{4}\right)^{3}\left[\left(5 u^{3}\right)^{2}+\left(5 u^{3}\right)\left(6 v^{4}\right)+\left(6 v^{4}\right)^{2}\right] \\
& =\left(5 u^{3}-6 v^{4}\right)^{3}\left(25 u^{6}+30 u^{3} v^{4}+36 v^{8}\right)
\end{aligned}
$$

R. 4 Example 7(a) Factoring by Substitution (page 40)

Factor $15 m^{4}-m^{2}-6$
Replace m^{2} with $u: 15 m^{4}-m^{2}-6=15 u^{2}-u-6$
Factor using FOIL: $15 u^{2}-u-6=(3 u-2)(5 u+3)$
Replace u with m^{2} :

$$
\begin{aligned}
& (3 u-2)(5 u+3)=\left(3 m^{2}-2\right)\left(5 m^{2}+3\right) \\
& 15 m^{4}-m^{2}-6=\left(3 m^{2}-2\right)\left(5 m^{2}+3\right)
\end{aligned}
$$

R. 4 Example 7(b) Factoring by Substitution (page 40)

Factor $8(3 x+1)^{2}+10(3 x+1)-25$
Replace $(3 x+1)$ with u :

$$
8(3 x+1)^{2}+10(3 x+1)-25=8 u^{2}+10 u-25
$$

Factor using FOIL: $8 u^{2}+10 u-25=(2 u+5)(4 u-5)$
Replace u with $(3 x+1)$, then simplify:

$$
\begin{aligned}
(2 u+5)(4 u-5) & =[2(3 x+1)+5][4(3 x+1)-5] \\
& =(6 x+2+5)(12 x+4-5) \\
& =(6 x+7)(12 x-1) \\
8(3 x+1)^{2}+ & 10(3 x+1)-25=(6 x+7)(12 x-1)
\end{aligned}
$$

R.4 Example 7(c) Factoring by Substitution (page 40)

Factor $(3 x+1)^{3}-27$
Replace $(3 x+1)$ with $u:(3 x+1)^{3}-27=u^{3}-27$
Write as the difference of cubes, then factor:

$$
u^{3}-27=u^{3}-3^{3}=(u-3)\left(u^{2}+3 u+9\right)
$$

Replace u with $(3 x+1)$, then simplify:

$$
\begin{aligned}
(u-3)\left(u^{2}+3 u+9\right) & =[(3 x+1)-3]\left[(3 x+1)^{2}+3(3 x+1)+9\right] \\
& =(3 x-2)\left[9 x^{2}+6 x+1+9 x+3+9\right] \\
& =(3 x-2)\left(9 x^{2}+15 x+13\right) \\
(3 x+1)^{3}-27 & =(3 x-2)\left(9 x^{2}+15 x+13\right)
\end{aligned}
$$

