Problems 1-6 taken from Elementary Statistics, Bluman, $7^{\text {th }}$ Edition

1. Use the multinomial formula and find the probabilities for each.
a) $n=6, X_{1}=3, X_{2}=2, X_{3}=1, p_{1}=0.5, p_{2}=0.3, p_{3}=0.2$
b) $n=5, X_{1}=1, X_{2}=2, X_{3}=2, p_{1}=0.3, p_{2}=0.3, p_{3}=0.1$
c) $n=4, X_{1}=1, X_{2}=1, X_{3}=2, p_{1}=0.8, p_{2}=0.1, p_{3}=0.1$
d) $n=3, X_{1}=1, X_{2}=1, X_{3}=1, p_{1}=0.5, p_{2}=0.3, p_{3}=0.2$
e) $n=5, X_{1}=1, X_{2}=3, X_{3}=1, p_{1}=0.7, p_{2}=0.2, p_{3}=0.1$
2. According to the manufacturer, M\&M's are produced and distributed in the following proportions: 13% brown; 13% red; 14% yellow; 16% green; 20% orange; 24% blue. In a random sample of 12 M\&M's, what is the probability of having 2 of each color?
3. A die is rolled 4 times. Find the probability of two 1 's, one 2 , and one 3 .
4. According to Mendel's theory, if tall and colorful plants are crossed with short and colorless plants, the corresponding probabilities are $\frac{9}{16}, \frac{\mathbf{3}}{16}, \frac{\mathbf{3}}{16}$, and $\frac{\mathbf{1}}{16}$ for tall and colorful, tall and colorless, short and colorful, and short and colorless, respectively. If 8 plants are selected, find the probability that 1 will be tall and colorful, 3 will be tall and colorless, 3 will be short and colorful, and 1 will be short and colorless.
5. Suppose we have a bowl with 10 marbles -2 red marbles, 3 green marbles, and 5 blue marbles. We randomly select 4 marbles from the bowl, with replacement. What is the probability of selecting 2 green marbles and 2 blue marbles?
6. There are two chess players. The probability that player A will win is 0.40 , the probability that player B will win is 0.35 , and the probability of a draw is 0.25 . If these two chess players played 12 games, what is the probability that Player A would win 7 games, Player B would win 2 games, and the remaining 3 games would be drawn?
