Chapter 1

Solve for x .

1. $|3 x-1|=5$
2. $x^{2}-3 x=-8$
3. $1-\frac{3}{x+5}=\frac{15}{x^{2}+5 x}$
$x^{2}+5 x-3 x=15$
$x^{2}+2 x-15=0$
$(x-3)(x+5)=0$
-5 won't work, $x=3$
4. $\sqrt{2 x+3}=1-x$

$$
\begin{aligned}
& 2 x+3=1-2 x+x^{2} \\
& 0=x^{2}-4 x-2 \\
& X=2 \pm \sqrt{6}, \text { but only } 2-\sqrt{6} \text { works }
\end{aligned}
$$

5. You want to buy a rectangular rug for a room that is $13 \mathrm{ft} . \mathrm{x} 17 \mathrm{ft}$. You need to leave a uniform strip of floor around the rug. You can afford to buy 140 sq. ft. of carpeting. What are the dimensions will the rug have?

$$
(13-2 x)(17-2 x)=140
$$

$$
X=13.5 \text { or } 1.5
$$

$$
13.5 \text { won't work, so } x=1.5 \text { and the dimensions are } 10 \times 14
$$

6. Solve. $\frac{3}{x-4}-3 \geq 0$ Write your answer in interval notation and draw a number line.

$$
\frac{3}{x-4}-\frac{3(x-4)}{x-4} \geq 0
$$

Check each interval: A and C won't work, so $(4,5]$ is the solution

Chapter 2

7. Write the equation for the line through (1, -4) perpendicular to $4 x-2 y=7$

$$
\begin{aligned}
& m=2 \\
& y+4=-1 / 2(x-1)
\end{aligned}
$$

$$
y=-1 / 2 x-7 / 2
$$

$$
\text { or } x+2 y=-7
$$

8. $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}+4$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$. Find $(f \circ g)(x)$

$$
\begin{aligned}
& (2 x-1)^{2}-2(2 x-1) \\
= & 4 x^{2}-4 x+1-4 x+2+4 \\
= & 4 x^{2}-8 x+7
\end{aligned}
$$

College Algebra Final Exam Review 3

9. Identify the y coordinate of the
10. Divide $\frac{x^{3}-1}{x+2}$
vertex of $y=x^{2}+6 x+6$

$$
\begin{aligned}
& h=-6 / 2=-3 \\
& k=f(h)=f(-3)=-3 \\
& \text { The } y \text {-coordinate is }-3
\end{aligned}
$$

12. R varies jointly as f and the square root of H. $R=0.00077$ when $h=3$ and $f=1$.

Find R when $h=4$ and $f=2$.
Solution:

$$
\begin{aligned}
& R=k f \sqrt{h} \\
& 7.7 \times 10^{4}=k \cdot 1 \cdot \sqrt{3} \\
& k=.0004445597073 \\
& R=.0004 \cdot 2 \cdot \sqrt{4}=.0016
\end{aligned}
$$

14. Given $\log _{\mathrm{a}} 2=0.4307$ and $\log _{\mathrm{a}} 3=0.6826$, find the value of $\log _{\mathrm{a}} 24$.

$$
\begin{aligned}
\log _{a} 2^{3 *} 3 & =3 \log _{a} 2+\log _{a} 3 \\
& =3(.4307)+.6826 \\
& =1.9747
\end{aligned}
$$

